Kiani, Mehrdad T.; Gan, Lucia T.; Traylor, Rachel; Yang, Rui; Barr, Christopher M.; Hattar, Khalid M.; Fan, Jonathan A.; Wendy Gu, X.
Grain boundaries have complex structural features that influence strength, ductility and fracture in metals and alloys. Grain boundary misorientation angle has been identified as a key parameter that controls their mechanical behavior, but the effect of misorientation angle has been challenging to isolate in polycrystalline materials. Here, we describe the use of bicrystal Au thin films made using a rapid melt growth process to study deformation at a single grain boundary. Tensile testing is performed on bicrystals with different misorientation angles using in situ TEM, as well as on a single crystalline sample. Plastic deformation is initiated through dislocation nucleation from free surfaces. Grain boundary sliding is not observed, and failure occurs away from the grain boundary through plastic collapse in all cases. The failure behavior in these nanoscale bicrystals does not appear to depend on the misorientation angle or grain boundary energy but instead has a more complex dependence on sample surface structure and dislocation activity.
Alloying is often employed to stabilize nanocrystalline materials against microstructural coarsening. The stabilization process results from the combined effects of thermodynamically reducing the curvature-dominated driving force of grain-boundary motion via solute segregation and kinetically pinning these same grain boundaries by solute drag and Zener pinning. The competition between these stabilization mechanisms depends not only on the grain-boundary character but can also be affected by imposed compositional and thermal fields that further promote or inhibit grain growth. In this work, we study the origin of the stability of immiscible nanocrystalline alloys in both homogeneous and heterogeneous compositional and thermal fields by using a multi-phase-field formulation for anisotropic grain growth with grain-boundary character-dependent segregation properties. This generalized formulation allows us to model the distribution of mobilities of segregated grain boundaries and the role of grain-boundary heterogeneity on solute-induced stabilization. As an illustration, we compare our model predictions to experimental results of microstructures in platinum-gold nanocrystalline alloys. Our results reveal that increasing the initial concentration of available solute progressively slows the rate of grain growth via both heterogeneous grain-boundary segregation and Zener pinning, while increasing the temperature generally weakens thermodynamic stabilization effects due to entropic contributions. Finally, we demonstrate as a proof-of-concept that spatially-varying compositional and thermal fields can be used to construct dynamically-stable, graded, nanostructured materials. We discuss the implications of using such concepts as alternatives to conventional plastic deformation methods.
The dynamic interactions of ions with matter drive a host of complex evolution mechanisms, requiring monitoring on short spatial and temporal scales to gain a full picture of a material response. Understanding the evolution of materials under ion irradiation and displacement damage is vital for many fields, including semiconductor processing, nuclear reactors, and space systems. Despite materials in service having a dynamic response to radiation damage, typical characterization is performed post-irradiation, washing out all information from transient processes. Characterizing active processes in situ during irradiation allows the mechanisms at play during the dynamic ion-material interaction process to be deciphered. In this review, we examine the in situ characterization techniques utilized for examining material structure, composition, and property evolution under ion irradiation. Covering analyses of microstructure, surface composition, and material properties, this work offers a perspective on the recent advances in methods for in situ monitoring of materials under ion irradiation, including a future outlook examining the role of complementary and combined characterization techniques in understanding dynamic materials evolution.
The Fusion Energy Sciences office supported “A Pilot Program for Research Traineeships to Broaden and Diversify Fusion Energy Sciences” at Sandia National Laboratories during the summer of 2021. This pilot project was motivated in part by the Fusion Energy Sciences Advisory Committee report observation that “The multidisciplinary workforce needed for fusion energy and plasma science requires that the community commit to the creation and maintenance of a healthy climate of diversity, equity, and inclusion, which will benefit the community as a whole and the mission of FES”. The pilot project was designed to work with North Carolina A&T (NCAT) University and leverage SNL efforts in FES to engage underrepresented students in developing and accessing advanced material solutions for plasma facing components in fusion systems. The intent was to create an environment conducive to the development of a sense of belonging amongst participants, foster a strong sense of physics identity among the participants, and provide financial support to enable students to advance academically while earning money. The purpose of this assessment is to review what worked well and lessons that can be learned. We reviewed implementation and execution of the pilot, describe successes and areas for improvement and propose a no-cost extension of the pilot project to apply these lessons and continue engagement activities in the summer of 2022.
Daly, Luke; Lee, Martin R.; Hallis, Lydia J.; Ishii, Hope A.; Bradley, John P.; Bland, Phillip A.; Saxey, David W.; Fougerouse, Denis; Rickard, William D.A.; Forman, Lucy V.; Timms, Nicholas E.; Jourdan, Fred; Reddy, Steven M.; Salge, Tobias; Zakaria; Quadir, Zakaria; Christou, Evangelos; Cox, Morgan A.; Aguiar, Jeffrey A.; Hattar, Khalid M.; Monterrosa, Anthony; Keller, Lindsay P.; Christoffersen, Roy; Dukes, Catherine A.; Loeffler, Mark J.; Thompson, Michelle S.
The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H+ irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m−3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.
Dennett, Cody A.; Dacus, Benjamin R.; Barr, Christopher M.; Clark, Trevor; Bei, Hongbin; Zhang, Yanwen; Short, Michael P.; Hattar, Khalid M.
Defects and microstructural features spanning the atomic level to the microscale play deterministic roles in the expressed properties of materials. Yet studies of material evolution in response to environmental stimuli most often correlate resulting performance with one dominant microstructural feature only. Here, the dynamic evolution of swelling in a series of Ni-based concentrated solid solution alloys under high-temperature irradiation exposure is observed using continuous, in situ measurements of thermoelastic properties in bulk specimens. Unlike traditional evaluation techniques which account only for volumetric porosity identified using electron microscopy, direct property evaluation provides an integrated response across all defect length scales. In particular, the evolution in elastic properties during swelling is found to depend significantly on the entire size spectrum of defects, from the nano- to meso-scales, some of which are not resolvable in imaging. Observed changes in thermal transport properties depend sensitively on the partitioning of electronic and lattice thermal conductivity. This emerging class of in situ experiments, which directly measure integrated performance in relevant conditions, provides unique insight into material dynamics otherwise unavailable using traditional methods.
Wang, Fei; Yan, Xueliang; Chen, Xin; Snyder, Nathan; Nastasi, Michael; Hattar, Khalid M.; Cui, Bai
The solid-state joining of oxide-dispersion-strengthened (ODS) austenitic steels was achieved using a pulsed electric current joining (PECJ) process. Microstructures of the austenitic grain structures and oxide dispersions in the joint areas were characterized using electron microscopy. Negligible grain growth was observed in austenitic grain structures, while slight coarsening of oxide dispersions occurred at a short holding time. The mechanisms of the PECJ process may involve three steps that occur simultaneously, including the sintering of mechanical alloying powders in the bonding layer, formation of oxide dispersions, and bonding of the mechanical alloying powders with the base alloy. The high hardness and irradiation resistance of ODS alloys were retained in the joint areas. This research revealed the fundamental mechanisms during the PECJ process, which is beneficial for its potential applications during the advanced manufacturing of ODS alloys.
Metal hydrides can store hydrogen isotopes with high volumetric density. In metal tritides, tritium beta decay can result in accumulation of helium within the solid, in some cases exceeding 10 at.% helium after only 4 years of aging. Helium is insoluble in most materials, but often does not readily escape, and instead coalesces to form nanoscale bubbles when helium concentrations are near 1 at.%. Blistering or spallation often occurs at higher concentrations. Radioactive particles shed during this process present a potential safety hazard. This study investigates the effects of high helium concentrations on erbium deuteride (ErD2), a non-radioactive surrogate material for erbium tritide (ErT2). To simulate tritium decay in the surrogate, high doses of 120 keV helium ions were implanted into ErD2 films at room temperature. Scanning and transmission electron microscopy indicated spherical helium bubble formation at a critical concentration of 1.5 at.% and bubble linkage leading to nanoscale crack formation at a concentration of 7.5 at.%. Additionally, crack propagation occurred through the nanocrack region, resulting in spallation extending from the implantation peak to the surface. Electron energy loss spectroscopy was utilized to confirm the presence of high-pressure helium in the nanocracks, suggesting that helium gas plays a predominant role in deformation. This work improves the overall understanding of helium behavior in ErD2 by using modern characterization techniques to determine: the critical helium concentration required for bubble formation, the material failure mechanism at high concentration, and the nanoscale mechanisms responsible for material failure in helium implanted ErD2.
A synthesis process is presented for experimentally simulating modifications in cosmic dust grains using sequential ion implantations or irradiations followed by thermal annealing. Cosmic silicate dust analogues were prepared via implantation of 20–80 keV Fe−, Mg−, and O− ions into commercially available p-type silicon (100) wafers. The as-implanted analogues are amorphous with a Mg/(Fe + Mg) ratio of 0.5 tailored to match theoretical abundances in circumstellar dusts. Before the ion implantations were performed, Monte-Carlo-based ion-solid interaction codes were used to model the dynamic redistribution of the implanted atoms in the silicon substrate. 600 keV helium ion irradiation was performed on one of the samples before thermal annealing. Two samples were thermally annealed at a temperature appropriate for an M-class stellar wind, 1000 K, for 8.3 h in a vacuum chamber with a pressure of 1 × 10−7 torr. The elemental depth profiles were extracted utilizing Rutherford Backscattering Spectrometry (RBS) in the samples before and after thermal annealing. X-ray diffraction (XRD) analysis was employed for the identification of various phases in crystalline minerals in the annealed analogues. Transmission electron microscopy (TEM) analysis was utilized to identify specific crystal structures. RBS analysis shows redistribution of the implanted Fe, Mg, and O after thermal annealing due to incorporation into the crystal structures for each sample type. XRD patterns along with TEM analysis showed nanocrystalline Mg and Fe oxides with possible incorporation of additional silicate minerals.
Stainless steel TPBAR components undergo neutron radiation-induced segregation and dislocation loop formation. Comparison experiments with ion beams accelerate the damage, and visualize the damage process with in-situ microscopy. In-situ Au irradiation causes defect formation, but no elemental segregation.
Zhang, Xiang; Wang, Fei; Yan, Xueliang; Li, Xing Z.; Hattar, Khalid M.; Cui, Bai
A nanostructured oxide-dispersion-strengthened (ODS) CoCrFeMnNi high-entropy alloy (HEA) is synthesized by a powder metallurgy process. The thermal stability, including the grain size and crystal structure of the HEA matrix and oxide dispersions, is carefully investigated by X-ray diffraction (XRD) and electron microscopy characterizations after annealing at 900 °C. The limited grain growth may be attributed to Zener pinning of yttria dispersions that impede the grain boundary mobility and diffusivity. The high hardness is caused by both the fine grain size and yttria dispersions, which are also retained after annealing at 900 °C. Herein, it is implied that the combination of ODS and HEA concepts may provide a new design strategy for the development of thermally stable nanostructured alloys for extreme environments.
Jawaharram, Gowtham S.; Barr, Christopher M.; Hattar, Khalid M.; Dillon, Shen J.
A series of nanopillar compression tests were performed on tungsten as a function of temperature using in situ transmission electron microscopy with localized laser heating. Surface oxidation was observed to form on the pillars and grow in thickness with increasing temperature. Deformation between 850◦C and 1120◦C is facilitated by long-range diffusional transport from the tungsten pillar onto adjacent regions of the Y2O3-stabilized ZrO2 indenter. The constraint imposed by the surface oxidation is hypothesized to underly this mechanism for localized plasticity, which is generally the so-called whisker growth mechanism. The results are discussed in context of the tungsten fuzz growth mechanism in He plasma-facing environments. The two processes exhibit similar morphological features and the conditions under which fuzz evolves appear to satisfy the conditions necessary to induce whisker growth.
Nanostructures with a high density of interfaces, such as in nanoporous materials and nanowires, resist radiation damage by promoting the annihilation and migration of defects. This study details the size effect and origins of the radiation damage mechanisms in nanowires and nanoporous structures in model face-centered (gold) and body-centered (niobium) cubic nanostructures using accelerated multi-cascade atomistic simulations and in-situ ion irradiation experiments. Our results reveal three different size-dependent mechanisms of damage accumulation in irradiated nanowires and nanoporous structures: sputtering for very small nanowires and ligaments, the formation and accumulation of point defects and dislocation loops in larger nanowires, and a face-centered-cubic to hexagonal-close-packed phase transformation for a narrow range of wire diameters in the case of gold nanowires. Smaller nanowires and ligaments have a net effect of lowering the radiation damage as compared to larger wires that can be traced back to the fact that smaller nanowires transition from a rapid accumulation of defects to a saturation and annihilation mechanism at a lower dose than larger nanowires. These irradiation damage mechanisms are accompanied with radiation-induced surface roughening resulting from defect-surface interactions. Comparisons between nanowires and nanoporous structures show that the various mechanisms seen in nanowires provide adequate bounds for the defect accumulation mechanisms in nanoporous structures with the difference attributed to the role of nodes connecting ligaments in nanoporous structures. Taken together, our results shed light on the compounded, size-dependent mechanisms leading to the radiation resistance of nanowires and nanoporous structures.
Matthews, Bethany E.; Sassi, Michel; Barr, Christopher; Ophus, Colin; Kaspar, Tiffany C.; Jiang, Weilin; Hattar, Khalid M.; Spurgeon, Steven R.
Mastery of order-disorder processes in highly nonequilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here, we describe the percolation of disorder at the model oxide interface LaMnO3/SrTiO3, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.
Ajantiwalay, Tanvi; Nagel, Lauren; Maloy, Stuart; Hattar, Khalid M.; Mecholsky, John J.; Aitkaliyeva, Assel
Ferritic/martensitic steels, such as HT-9, are known for their complex microstructural features and mechanical properties. In this paper, in-situ micro-tensile tests and traditional fractography methods were utilized to study the fracture behavior of proton-irradiated HT-9 steels. First, to evaluate the viability of micro-tensile tests for nuclear material qualification process, meso‑tensile tests on as-received HT-9 steels were performed. Fracture mechanisms of unirradiated HT-9 steels at both length scales were compared and underlying mechanisms discussed. The direct comparison of micro- and meso‑scale data shows a distinctive size effect demonstrated by the increase in yield stress (YS). Upon completion of initial assessment, specimens were irradiated with 4 MeV+ protons to three fluences, all of which were lower than 0.01 displacements per atom (dpa). As expected, the YS increases with irradiation. However, at 7 × 10−3 dpa, the reversal of the trend was observed, and the YS exhibited sharp decline. We demonstrate that at lower length scales, grain structure has a more profound impact on the mechanical properties of irradiated materials, which provides information needed to fill in the gap in current understanding of the HT-9 fracture at different length scales.
Nanocrystalline Al thin films have been strained in situ in a transmission electron microscope using two separate nanomechanical techniques involving a push-to-pull device and a microelectromechanical system (MEMS) device. Deformation-induced grain growth was observed to occur via stress-assisted grain boundary migration with extensive grain growth occurring in the necked region, indicating that the increase in local stress drives the boundary migration. Under applied tensile stresses close to the ultimate tensile strength of 450 MPa for a nanocrystalline Al specimen, measured boundary migration speeds are 0.2 – 0.7 nm s−1 for grains outside necked region and increases to 2.5 nm s−1 for grains within the necked region where the local estimated tensile stresses are elevated to around 630 MPa. By tracking grain boundary motion over time, molecular dynamics simulations showed qualitative agreement in terms of pronounced grain boundary migration with the experimental observations. The combined in situ observation and molecular dynamics simulation results underscore the important role of stress-driven grain growth in plastically deforming nanocrystalline metals, leading to intergranular fracture through predominant grain boundary sliding in regions with large localized deformation.
In this article, we have evaluated the Read-Retry (RR) functionality of the 3-D NAND chip of multilevel-cell (MLC) configuration after total ionization dose (TID) exposure. The RR function is typically offered in the high-density state-of-the-art NAND memory chips to recover data once the default memory read method fails to correct data with error correction codes (ECCs). In this work, we have applied the RR method on the irradiated 3-D NAND chip that was exposed with a Co-60 gamma-ray source for TID up to 50 krad (Si). Based on our experimental evaluation results, we have proposed an algorithm to efficiently implement the RR method to extend the radiation tolerance of the NAND memory chip. Our experimental evaluation shows that the RR method coupled with ECC can ensure data integrity of MLC 3-D NAND for TID up to 50 krad (Si).
Kang, Jin G.; Jang, Hyejin; Ma, Jun; Yang, Qun; Hattar, Khalid M.; Diao, Zhu; Yuan, Renliang; Zuo, Jianmin; Sinha, Sanjiv; Cahill, David G.; Braun, Paul V.
While there is no known fundamental lower limit to the thermal conductivity of a material, the lowest thermal conductivities are typically found in amorphous and strongly disordered materials, not highly crystalline materials. Here, we demonstrate a surprising nanostructuring route to ultralow thermal conductivity in a large-unit-cell oxide crystal (Fe3O4) containing close-packed nanoscale pores. The electrical conductivity of this material reduces by a factor of 5 relative to dense v, independent of pore size. In contrast, thermal conductivity has a strong dependence on pore size with a factor of 40 of suppression relative to dense Fe3O4 for 40 nm pores vs a factor of 5 for 500 nm pores. The matrix thermal conductivity of Fe3O4 containing 40 nm pores falls below the predicted minimum thermal conductivity by a factor of 3. Finally, we attribute this to strong acoustic phonon scattering and intrinsically limited contributions to thermal conductivity from optical phonons with small dispersion.
Abstract: Multimodal in-situ experiments are the wave of the future, as this approach will permit multispectral data collection and analysis during real-time nanoscale observation. In contrast, the evolution of technique development in the electron microscopy field has generally trended toward specialization and subsequent bifurcation into more and more niche instruments, creating a challenge for reintegration and backward compatibility for in-situ experiments on state-of-the-art microscopes. We do not believe this to be a requirement in the field; therefore, we propose an adaptive instrument that is designed to allow nearly simultaneous collection of data from aberration-corrected transmission electron microscopy (TEM), probe-corrected scanning transmission electron microscopy, ultrafast TEM, and dynamic TEM with a flexible in-situ testing chamber, where the entire instrument can be modified as future technologies are developed. The value would be to obtain a holistic understanding of the underlying physics and chemistry of the process-structure–property relationships in materials exposed to controlled extreme environments. Such a tool would permit the ability to explore, in-situ, the active reaction mechanisms in a controlled manner emulating those of real-world applications with nanometer and nanosecond resolution. If such a powerful tool is developed, it has the potential to revolutionize our materials understanding of nanoscale mechanisms and transients. Graphical Abstract: [Figure not available: see fulltext.].
Nanocrystalline (NC) metals suffer from an intrinsic thermal instability; their crystalline grains undergo rapid coarsening during processing treatments or under service conditions. Grain boundary (GB) solute segregation has been proposed to mitigate grain growth and thermally stabilize the grain structures of NC metals. However, the role of GB character in solute segregation and thermal stability of NC metals remains poorly understood. Herein, we employ high resolution microscopy techniques, atomistic simulations, and theoretical analysis to investigate and characterize the impact of GB character on segregation behavior and thermal stability in a model NC Pt-Au alloy. High resolution electron microscopy along with X-ray energy dispersive spectroscopy and automated crystallographic orientation mapping is used to obtain spatially correlated Pt crystal orientation, GB misorientation, and Au solute concentration data. Atomistic simulations of polycrystalline Pt-Au systems are used to reveal the plethora of GB segregation profiles as a function of GB misorientation and the corresponding impact on grain growth processes. With the aid of theoretical models of interface segregation, the experimental data for GB concentration profiles are used to extract GB segregation energies, which are then used to elucidate the impact of GB character on solute drag effects. Our results highlight the paramount role of GB character in solute segregation behavior. In broad terms, our approach provides future avenues to employ GB segregation as a microstructure design strategy to develop NC metallic alloys with tailored microstructures. This journal is
In this study, we report on the thermal conductivity of amorphous carbon generated in diamond via nitrogen ion implantation (N 3 + at 16.5 MeV). Transmission electron microscopy techniques demonstrate amorphous band formation about the longitudinal projected range, localized approximately 7 μm beneath the sample surface. While high-frequency time-domain thermoreflectance measurements provide insight into the thermal properties of the near-surface preceding the longitudinal projected range depth, a complimentary technique, steady-state thermoreflectance, is used to probe the thermal conductivity at depths which could not otherwise be resolved. Through measurements with a series of focusing objective lenses for the laser spot size, we find the thermal conductivity of the amorphous region to be approximately 1.4 W m-1 K-1, which is comparable to that measured for amorphous carbon films fabricated through other techniques.
In-situ transmission electron microscopy (TEM) provides an avenue to explore time-dependent nanoscale material changes induced by a wide range of environmental conditions that govern material performance and degradation. The In-situ Ion Irradiation TEM (I3TEM) at Sandia National Laboratories is a JEOL 2100 microscope that has been highly modified with an array of hardware and software that makes it particularly well suited to explore fundamental mechanisms that arise from coupled extreme conditions. Here, examples pertaining to multibeam ion irradiation, rapid thermal cycling, and nanomechanical testing on the I3TEM are highlighted, along with prospective advancements in the field of in-situ microscopy.
Islam, Zahabul; Barr, Christopher M.; Hattar, Khalid M.; Haque, Aman
In this study, we explore the interaction of electron wind force (EWF) with defects originating from ion irradiation in-situ inside a transmission electron microscope. Nanocrystalline gold specimens were self-ion irradiated to a dose of 5 × 1015 ions/cm2 (45 displacement per atom) to generate a high density of displacement damage. We also developed a molecular dynamics simulation model to understand the associated atomic scale mechanisms. Both experiments and simulations show that the EWF can impart significant defect mobility even at low temperatures, resulting in the migration and elimination of defects in a few minutes. We propose that the EWF interacts with defects to create highly glissile Shockley partial dislocations, which makes the fast and low temperature defect annihilation possible.