Publications

Results 26–50 of 91

Search results

Jump to search filters

Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity

Analytical Chemistry

Harmon, Brooke N.; Seamon, Kyle J.; Saada, Edwin A.; Light, Yooli K.; Schoeniger, Joseph S.

The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.

More Details

Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Schoeniger, Joseph S.

Bacterial pathogens have numerous processes by which their genomic DNA is acquired or rearranged as part of their normal physiology (e.g., exchange of plasmids through conjugation) or by bacteriophage that parasitize bacteria and often insert into the bacterial genome as prophages. These processes occur with relatively high probability/frequency, and may lead to sudden changes in virulence, as new genetic material is added to the chromosome, or structural changes in the chromosome affect gene expression. We set out to devise methods to measure the rates of these processes in bacteria using next generation DNA sequencing. Using very deep sequencing on genomes we had assembled, using library preparation methods and bioinformatics tools designed to help find mobile elements and signs of their insertion, we were able to find numerous examples of attempted novel genome arrangements, revealing data that can be used to calculate rates of different mechanisms of genome change.

More Details

Experimental single-strain mobilomics reveals events that shape pathogen emergence

Nucleic Acids Research

Schoeniger, Joseph S.; Hudson, Corey H.; Bent, Zachary W.; Sinha, Anupama S.; Williams, Kelly P.

Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens.

More Details

Genome sequence of the historical clinical isolate Burkholderia pseudomallei PHLS 6

Genome Announcements

D'Haeseleer, Patrik; Johnson, Shannon L.; Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joseph S.; Ray, Debjit R.; Sinha, Anupama S.; Williams, Kelly P.; Pena, Jose; Branda, Steven B.; El-Etr, Sahar

Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long.

More Details

Advanced Diagnostic and Sample Preparation Platform for Early Threat Surveillance

Branda, Steven B.; Jebrail, Mais J.; Sinha, Anupama S.; Renzi, Ronald F.; Bartsch, Michael B.; Van De Vreugde, James L.; Gondhalekar, Carmen; Amriz, Cesar; Schoeniger, Joseph S.; Meagher, Robert M.; Patel, Kamlesh P.

Emerging infectious diseases present a profound threat to global health, economic development, and political stability, and therefore represent a significant national security concern for the United States. The increased prevalence of international travel and globalized trade further amplify the threat of infectious disease outbreaks of catastrophic effect. The key to containing and eradicating an outbreak before it goes global is rapid identification of index cases and initial clusters of affected individuals. This depends upon establishment of a biosurveillance network that effectively reaches infectious disease hotspots in even the most remote regions of the world and provides a network-integrated, location-appropriate diagnostic capability. At present, there are two critical needs which must be addressed in order to extend biosurveillance activities beyond centralized laboratory facilities: 1) A simple, reliable, and safe method for immediate stabilization of clinical specimens in the field; and 2) A flexible sample processing platform that enables in-field preparation of clinical specimens for rapid, on-site analysis using a variety of diagnostic assay platforms. These needs are not necessarily mutually exclusive; in fact, we propose that they are most efficiently addressed by a deployable sample processing platform that immediately stabilizes the information content of clinical specimens through transformation of the inherently unstable analytes of interest into stable equivalents that are appropriately formatted for downstream analysis. In order to address this problem, we have developed a sample processing pipeline and microfluidics-based platform modules enabling: 1) Extraction of total RNA from finger-stick quantities of human whole blood; and 2) Microscale synthesis of appropriately-formatted cDNA products that capture the information content of blood RNA in a stable form that supports pathogen detection and/or characterization via PCR and/or Second Generation Sequencing (SGS). Through this research we have discovered new, effective solutions for problems that thus far have hindered use of digital microfluidics (DMF) in biomedical applications. Our work reveals a clear path forward to fieldable, automated sample processing systems that will enable rapid, on-site identification of usual-suspect and novel pathogens in clinical specimens for improved biosurveillance.

More Details

Genomic Functionalization: The Next Revolution In Biology

Imbro, Paula I.; Schoeniger, Joseph S.; Anderson, Peter A.

We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

More Details
Results 26–50 of 91
Results 26–50 of 91