Publications

Results 51–75 of 106

Search results

Jump to search filters

Using and Developing Novel Data Analytics for Digitalized Microstructures. Draft

Castillo, Andrew R.; Mitchell, John A.; Bond, Stephen D.

The primary goal of this work is to develop and implement analytic methods for quantitative analysis of microstructure. These analytic methods are demonstrated on microstructures generated by the Sandia kinAic Monte Carlo code SPPARKS. This report documents progress to that end as well as incremental work towards larger aspirations of making process-structure-property connections for complex processes such as welding and additive manufacturing.

More Details

Towards Using Eshelby Calculations to Enhance Kinetic Model for Zirconium Hydride Precipitation

Mitchell, John A.; Tikare, Veena T.; Weck, Philippe F.

A C++ library (called Eshelby) was implemented in fiscal year 2015 based upon the formulas documented in this report. The library implements a generalized version of Eshelby's inclusion problem. The library was written as a set of functions which can be called from another program; the principle intended use cases are kinetic models of precipitate formation in zirconium claddings where use of the Eshelby library provides needed elastic energy density calculations, as well as calculations of stress and strain in and around precipitates; it is intended that the library will be made open source. For isotropic inclusions in the form of oblate and prolate ellipsoids, the Eshelby library can be used for nearly any relevant/appropriate shape parameters to calculate strains, stresses and energy density at interior and exterior points. The Eshelby library uses a combination of analytical formulas and numerical routines making it very extensible. For example, the library can can easily be extended to include inclusions such as spheres since analytical expressions exist for the required elliptic integrals; similarly, general ellipsoids do not have analytical results for the required elliptic integrals but those integrals can be numerically evaluated and thus fit naturally into the Eshelby library. This report documents all formulas implemented in the Eshelby library and presents some demonstration calculations relevant to the intended application.

More Details

Modeling of hydride precipitation and re-orientation

Tikare, Veena T.; Weck, Philippe F.; Mitchell, John A.

In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

More Details

Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

Littlewood, David J.; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob O.; Gunzburger, Max

Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for dramatically improved consistency at domain boundaries, and an enhancement to the meshfree discretization applied to peridynamic models that removes irregularities at the limit of the nonlocal length scale and dramatically improves conver- gence behavior. Finally, a novel approach for modeling ductile failure has been developed, moti- vated by the desire to apply coupled local-nonlocal models to a wide variety of materials, including ductile metals, which have received minimal attention in the peridynamic literature. Software im- plementation of the partial-stress coupling strategy, the position-aware peridynamic constitutive models, and the strategies for improving the convergence behavior of peridynamic models was completed within the Peridigm and Albany codes, developed at Sandia National Laboratories and made publicly available under the open-source 3-clause BSD license.

More Details

Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

Dalton Transactions

Weck, Philippe F.; Kim, Eunja; Tikare, Veena T.; Mitchell, John A.

The elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn3m polymorph of δ-ZrH1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P42/mcm polymorph. Elastic moduli predicted with the Voigt-Reuss-Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debye temperatures predicted for γ-ZrH, δ-ZrH1.5 and ε-ZrH2 are D = 299.7, 415.6 and 356.9 K, respectively, while D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.

More Details

A position-aware linear solid constitutive model for peridynamics

Journal of Mechanics of Materials and Structures

Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.

A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. Improved model behavior in the vicinity of free surfaces is achieved through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. The model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations on simple benchmark problems show a sharp reduction in error relative to the LPS model.

More Details
Results 51–75 of 106
Results 51–75 of 106