Microfabricated surface ion trap technology development for localized hyperfine qubit control
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.
An AlN MEMS resonator technology has been developed, enabling massively parallel filter arrays on a single chip. Low-loss filter banks covering the 10 MHz--10-GHz frequency range have been demonstrated, as has monolithic integration with inductors and CMOS circuitry. The high level of integration enables miniature multi-bandm spectrally aware, and cognitive radios.
Abstract not provided.
2008 IEEE International Frequency Control Symposium, FCS
This paper reports the development of narrow-bandwidth, post-CMOS compatible aluminum nitride (AlN) MEMS filters operating in the very (VHF) and ultra (UHF) high frequency bands. Percent bandwidths less than 0.1% are achieved utilizing a mechanically coupled filter architecture, where a quarter wavelength beam attached in low velocity coupling locations is used to connect two AlN ring resonators. The filter bandwidth has been successfully varied from 0.09% to 0.2% by moving the attachment of the coupling beam on the ring to locations with different velocity at resonance. Insertion losses of 11 dB are obtained for filters centered at 99.5 MHz with low termination impedances of 200 &Omega. Utilizing a passive temperature compensation technique, the temperature coefficient of frequency (TCF) for these filters has been reduced from -21 ppm/C to 2.5 ppm/C. The reduced TCF is critical for narrow bandwidth filters, requiring only 13% of the filter bandwidth to account for military range (-55 to 125 C) temperature variations compared to 100% for uncompensated filters. Filters operating at 557 MHz are realized using overtone operation of the ring resonators and coupling beam where higher insertion losses of 32 dB into 50 ω are seen due to the finite resonator quality factor and narrow bandwidth design. Overtone operation allows for the implementation of fully differential and balun type filters where the stop-band rejection is as high as 38 dB despite the increased Insertion loss. © 2008 IEEE.
2008 IEEE International Frequency Control Symposium, FCS
This paper reports the development of narrow-bandwidth, post-CMOS compatible aluminum nitride (AlN) MEMS filters operating in the very (VHF) and ultra (UHF) high frequency bands. Percent bandwidths less than 0.1% are achieved utilizing a mechanically coupled filter architecture, where a quarter wavelength beam attached in low velocity coupling locations is used to connect two AlN ring resonators. The filter bandwidth has been successfully varied from 0.09% to 0.2% by moving the attachment of the coupling beam on the ring to locations with different velocity at resonance. Insertion losses of 11 dB are obtained for filters centered at 99.5 MHz with low termination impedances of 200 &Omega. Utilizing a passive temperature compensation technique, the temperature coefficient of frequency (TCF) for these filters has been reduced from -21 ppm/C to 2.5 ppm/C. The reduced TCF is critical for narrow bandwidth filters, requiring only 13% of the filter bandwidth to account for military range (-55 to 125 C) temperature variations compared to 100% for uncompensated filters. Filters operating at 557 MHz are realized using overtone operation of the ring resonators and coupling beam where higher insertion losses of 32 dB into 50 ω are seen due to the finite resonator quality factor and narrow bandwidth design. Overtone operation allows for the implementation of fully differential and balun type filters where the stop-band rejection is as high as 38 dB despite the increased Insertion loss. © 2008 IEEE.
Abstract not provided.
Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.
Real time temperature measurements have been performed on both GaAs and silicon substrates during wafer processing using a technique based upon diffuse reflectance spectroscopy (DRS). Good temperature resolution ({+-}O.4 {degrees}C) and rapid updates have enabled the process control potential of the device to be demonstrated.