Publications

Results 51–75 of 92

Search results

Jump to search filters

Advances in process intensification through multifunctional reactor engineering

Gill, Walt; O'Hern, Timothy J.; Cooper, Marcia A.; Miller, James E.

A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

More Details

Final report : CO2 reduction using biomimetic photocatalytic nanodevices

Song, Yujiang S.; Garcia, Robert M.; Shelnutt, John A.; Miller, James E.

Nobel Prize winner Richard Smalley was an avid champion for the cause of energy research. Calling it 'the single most important problem facing humanity today,' Smalley promoted the development of nanotechnology as a means to harness solar energy. Using nanotechnology to create solar fuels (i.e., fuels created from sunlight, CO{sub 2}, and water) is an especially intriguing idea, as it impacts not only energy production and storage, but also climate change. Solar irradiation is the only sustainable energy source of a magnitude sufficient to meet projections for global energy demand. Biofuels meet the definition of a solar fuel. Unfortunately, the efficiency of photosynthesis will need to be improved by an estimated factor of ten before biofuels can fully replace fossil fuels. Additionally, biological organisms produce an array of hydrocarbon products requiring further processing before they are usable for most applications. Alternately, 'bio-inspired' nanostructured photocatalytic devices that efficiently harvest sunlight and use that energy to reduce CO{sub 2} into a single useful product or chemical intermediate can be envisioned. Of course, producing such a device is very challenging as it must be robust and multifunctional, i.e. capable of promoting and coupling the multi-electron, multi-photon water oxidation and CO{sub 2} reduction processes. Herein, we summarize some of the recent and most significant work towards creating light harvesting nanodevices that reduce CO{sub 2} to CO (a key chemical intermediate) that are based on key functionalities inspired by nature. We report the growth of Co(III)TPPCl nanofibers (20-100 nm in diameter) on gas diffusion layers via an evaporation induced self-assembly (EISA) method. Remarkably, as-fabricated electrodes demonstrate light-enhanced activity for CO{sub 2} reduction to CO as evidenced by cyclic voltammograms and electrolysis with/without light irradiation. To the best of our knowledge, it is the first time to observe such a light-enhanced CO{sub 2} reduction reaction based on nanostructured cobalt(III) porphyrin catalysts. Additionally, gas chromatography (GC) verifies that light irradiation can improve CO production by up to 31.3% during 2 hours of electrolysis. In addition, a variety of novel porphyrin nano- or micro-structures were also prepared including nanospheres, nanotubes, and micro-crosses.

More Details

LDRD final report on "fundamentals of synthetic conversion of CO2 to simple hydrocarbon fuels" (LDRD 113486)

Stewart, Constantine A.; Miller, James E.; Kemp, Richard K.

Energy production is inextricably linked to national security and poses the danger of altering the environment in potentially catastrophic ways. There is no greater problem than sustainable energy production. Our purpose was to attack this problem by examining processes, technology, and science needed for recycling CO{sub 2} back into transportation fuels. This approach can be thought of as 'bio-inspired' as nature employs the same basic inputs, CO{sub 2}/energy/water, to produce biomass. We addressed two key deficiencies apparent in current efforts. First, a detailed process analysis comparing the potential for chemical and conventional engineering methods to provide a route for the conversion of CO{sub 2} and water to fuel has been completed. No apparent 'showstoppers' are apparent in the synthetic route. Opportunities to improve current processes have also been identified and examined. Second, we have also specifically addressed the fundamental science of the direct production of methanol from CO{sub 2} using H{sub 2} as a reductant.

More Details

Summary report : direct approaches for recycling carbon dioxide into synthetic fuel

Miller, James E.; Siegel, Nathan P.; Diver, Richard B.; Gelbard, Fred G.; Ambrosini, Andrea A.; Allendorf, Mark D.

The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

More Details

Innovative solar thermochemical water splitting

Diver, Richard B.; Siegel, Nathan P.; Moss, Timothy A.; Miller, James E.; Hogan, Roy E.; Allendorf, Mark D.

Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

More Details

Summary report : universal fuel processor

Miller, James E.; Staiger, Chad S.; Cornelius, Christopher J.; Rice, Steven F.; Coker, Eric N.; Stewart, Constantine A.; Kemp, Richard K.; Pickett, Lyle M.

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

More Details

Forward osmosis :a new approach to water purification and desalination

Miller, James E.

Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization of membranes is recommended. The identification of optimal osmotic agents for different applications is also suggested as it is clear that the space of potential agents and recovery processes has not been fully explored.

More Details

LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591)

Kemp, Richard K.; Stewart, Constantine A.; Miller, James E.

This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

More Details

Revolutionary systems for catalytic combustion and diesel catalytic particulate traps

Miller, James E.; Stuecker, John N.; Ferrizz, Robert F.; Witze, Peter O.

This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.

More Details

Initial cost analysis of a desalination process utilizing hydrotalcite and permutite for ion sequestration

Miller, James E.

An initial cost analysis of a proposed desalination process was performed. The proposed process utilizes tailored inorganic ion exchangers, hydrotalcite and permutite, to sequester anions and cations from a brackish water solution. Three different process scenarios were considered: (1) disposal of the spent exchangers as dry waste (2) conventional chemical regeneration, and (3) acid regeneration of permutite coupled with thermal (550 C) regeneration of hydrotalcite. Disposal of the resin and conventional regeneration are not viable options from an economic standpoint. Applying limited data and optimistic assumptions to the third scenario yielded an estimate of $2.34/kgal of product water. Published values for applying conventional reverse osmosis to similar water streams range from $0.70 to $2.65/kgal. Consistent with these baseline values, the Water Treatment Estimation Routine, WaTER, developed by the United States Department of the Interior, Bureau of Reclamation produced a cost estimate of $1.16/kgal for brackish water reverse osmosis.

More Details

Monolithic supports with unique geometries and enhanced mass transfer

Ferrizz, Robert F.; Stuecker, John N.; Cesarano, Joseph C.; Miller, James E.

The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

More Details
Results 51–75 of 92
Results 51–75 of 92