Attacks on cyber systems continue to plague public and private sector enterprises. While cyber zone defense is an appealing strategy to prevent, disrupt and tolerate these attacks, existing approaches assign hosts to zones based on their function (for example, printer zones and sensor zones) or place in the architecture (for example, corporate zones and demilitarized zones). This leaves the large number of human-operated commodity workstations within an enterprise unaddressed. We propose a dynamic zoning algorithm which periodically or asynchronously assigns hosts to zones based on peer requests made by their human operators. The proposed algorithm runs quickly on basic hardware for a large enterprise, and the zone statistics converge to values that match what simple mathematical models predict. We conclude that dynamic cyber zone defense calls for additional research and is a candidate for technology transfer.
The competition between cyber attackers and defenders is fundamentally a game. In this game, the stakes are high, the decisions are difficult and the timescale is very short. To date, most researchers in this area have focused on the strategic level decisions. This focus enables what-if scenarios that hinge on the opening move of the game. However, this approach does not allow for flexibility after the players choose these high-level opening moves. We compare this situation to a turn-based style of play where we hope to end the game quickly, for example, by halting the execution of a software program when we detect a signature that matches some definition of malicious.
The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.
Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.
Estimates of the source term from a U.S. Department of Energy (DOE) nuclear facility requires that the analysts know how to apply the simulation tools used, such as the MELCOR code, particularly for a complicated facility that may include an air ventilation system and other active systems that can influence the environmental pathway of the materials released. DOE has designated MELCOR 1.8.5, an unsupported version, as a DOE ToolBox code in its Central Registry, which includes a leak-path-factor guidance report written in 2004 that did not include experimental validation data. To continue to use this MELCOR version requires additional verification and validations, which may not be feasible from a project cost standpoint. Instead, the recent MELCOR should be used. Without any developer support and lack of experimental data validation, it is difficult to convince regulators that the calculated source term from the DOE facility is accurate and defensible. This research replaces the obsolete version in the 2004 DOE leak path factor guidance report by using MELCOR 2.1 (the latest version of MELCOR with continuing modeling development and user support) and by including applicable experimental data from the reactor safety arena and from applicable experimental data used in the DOE-HDBK-3010. This research provides best practice values used in MELCOR 2.1 specifically for the leak path determination. With these enhancements, the revised leak-path-guidance report should provide confidence to the DOE safety analyst who would be using MELCOR as a source-term determination tool for mitigated accident evaluations.
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if - and only if - the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10-4).
Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with â '11 to â '13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that â '12 brightness meteors can generate audible sound at ∼25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.