Publications

Results 1–25 of 228

Search results

Jump to search filters

Detecting outbreaks using a spatial latent field

PLOS ONE

Ray, Jaideep; Bridgman, Wyatt

In this paper, we present a method for estimating the infection-rate of a disease as a spatial-temporal field. Our data comprises time-series case-counts of symptomatic patients in various areal units of a region. We extend an epidemiological model, originally designed for a single areal unit, to accommodate multiple units. The field estimation is framed within a Bayesian context, utilizing a parameterized Gaussian random field as a spatial prior. We apply an adaptive Markov chain Monte Carlo method to sample the posterior distribution of the model parameters condition on COVID-19 case-count data from three adjacent counties in New Mexico, USA. Our results suggest that the correlation between epidemiological dynamics in neighboring regions helps regularize estimations in areas with high variance (i.e., poor quality) data. Using the calibrated epidemic model, we forecast the infection-rate over each areal unit and develop a simple anomaly detector to signal new epidemic waves. Our findings show that anomaly detector based on estimated infection-rates outperforms a conventional algorithm that relies solely on case-counts.

More Details

Predictive dynamic wetting, fluid–structure interaction simulations for braze run-out

Computers and Fluids

Horner, Jeffrey S.; Kemmenoe, David J.; Bourdon, Gustav J.; Roberts, Scott A.; Arata, Edward R.; Ray, Jaideep; Grillet, Anne M.

Brazing and soldering are metallurgical joining techniques that use a wetting molten metal to create a joint between two faying surfaces. The quality of the brazing process depends strongly on the wetting properties of the molten filler metal, namely the surface tension and contact angle, and the resulting joint can be susceptible to various defects, such as run-out and underfill, if the material properties or joining conditions are not suitable. In this work, we implement a finite element simulation to predict the formation of such defects in braze processes. This model incorporates both fluid–structure interaction through an arbitrary Eulerian–Lagrangian technique and free surface wetting through conformal decomposition finite element modeling. Upon validating our numerical simulations against experimental run-out studies on a silver-Kovar system, we then use the model to predict run-out and underfill in systems with variable surface tension, contact angles, and applied pressure. Finally, we consider variable joint/surface geometries and show how different geometrical configurations can help to mitigate run-out. This work aims to understand how brazing defects arise and validate a coupled wetting and fluid–structure interaction simulation that can be used for other industrial problems.

More Details

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Ray, Jaideep; Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. In this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Ray, Jaideep; Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. In this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

Calibrating hypersonic turbulence flow models with the HIFiRE-1 experiment using data-driven machine-learned models

Computer Methods in Applied Mechanics and Engineering

Chowdhary, Kenny; Hoang, Chi; Ray, Jaideep; Lee, Kookjin

In this paper we study the efficacy of combining machine-learning methods with projection-based model reduction techniques for creating data-driven surrogate models of computationally expensive, high-fidelity physics models. Such surrogate models are essential for many-query applications e.g., engineering design optimization and parameter estimation, where it is necessary to invoke the high-fidelity model sequentially, many times. Surrogate models are usually constructed for individual scalar quantities. However there are scenarios where a spatially varying field needs to be modeled as a function of the model's input parameters. We develop a method to do so, using projections to represent spatial variability while a machine-learned model captures the dependence of the model's response on the inputs. The method is demonstrated on modeling the heat flux and pressure on the surface of the HIFiRE-1 geometry in a Mach 7.16 turbulent flow. The surrogate model is then used to perform Bayesian estimation of freestream conditions and parameters of the SST (Shear Stress Transport) turbulence model embedded in the high-fidelity (Reynolds-Averaged Navier–Stokes) flow simulator, using shock-tunnel data. The paper provides the first-ever Bayesian calibration of a turbulence model for complex hypersonic turbulent flows. We find that the primary issues in estimating the SST model parameters are the limited information content of the heat flux and pressure measurements and the large model-form error encountered in a certain part of the flow.

More Details

Detecting technological maturity from bibliometric patterns

Expert Systems with Applications

Cauthen, Katherine R.; Rai, Prashant; Hale, Nicholas; Freeman, Laura; Ray, Jaideep

The capability to identify emergent technologies based upon easily accessed open-source indicators, such as publications, is important for decision-makers in industry and government. The scientific contribution of this work is the proposition of a machine learning approach to the detection of the maturity of emerging technologies based on publication counts. Time-series of publication counts have universal features that distinguish emerging and growing technologies. We train an artificial neural network classifier, a supervised machine learning algorithm, upon these features to predict the maturity (emergent vs. growth) of an arbitrary technology. With a training set comprised of 22 technologies we obtain a classification accuracy ranging from 58.3% to 100% with an average accuracy of 84.6% for six test technologies. To enhance classifier performance, we augmented the training corpus with synthetic time-series technology life cycle curves, formed by calculating weighted averages of curves in the original training set. Training the classifier on the synthetic data set resulted in improved accuracy, ranging from 83.3% to 100% with an average accuracy of 90.4% for the test technologies. The performance of our classifier exceeds that of competing machine learning approaches in the literature, which report an average classification accuracy of only 85.7% at maximum. Moreover, in contrast to current methods our approach does not require subject matter expertise to generate training labels, and it can be automated and scaled.

More Details

Validation of Calibrated k–ε Model Parameters for Jet-in-Crossflow

AIAA Journal

Miller, Nathan E.; Beresh, Steven J.; Ray, Jaideep

Previous efforts determined a set of calibrated, optimal model parameter values for Reynolds-averaged Navier–Stokes (RANS) simulations of a compressible jet in crossflow (JIC) using a $k–ε$ turbulence model. These parameters were derived by comparing simulation results to particle image velocimetry (PIV) data of a complementary JIC experiment under a limited set of flow conditions. Here, a $k–ε$ model using both nominal and calibrated parameters is validated against PIV data acquired from a much wider variety of JIC cases, including a realistic flight vehicle. The results from the simulations using the calibrated model parameters showed considerable improvements over those using the nominal values, even for cases that were not used in the calibration procedure that defined the optimal parameters. This improvement is demonstrated using a number of quality metrics that test the spatial alignment of the jet core, the magnitudes of multiple flow variables, and the location and strengths of vortices in the counter-rotating vortex cores on the PIV planes. These results suggest that the calibrated parameters have applicability well outside the specific flow case used in defining them and that with the right model parameters, RANS solutions for the JIC can be improved significantly over those obtained from the nominal model.

More Details

Qualifying Training Datasets for Data-Driven Turbulence Closures

AIAA AVIATION 2022 Forum

Banerjee, Tania; Ray, Jaideep; Barone, Matthew F.; Domino, Stefan P.

We develop methods that could be used to qualify a training dataset and a data-driven turbulence closure trained on it. By qualify, we mean identify the kind of turbulent physics that could be simulated by the data-driven closure. We limit ourselves to closures for the Reynolds-Averaged Navier Stokes (RANS) equations. We build on our previous work on assembling feature-spaces, clustering and characterizing Direct Numerical Simulation datasets that are typically pooled to constitute training datasets. In this paper, we develop an alternative way to assemble feature-spaces and thus check the correctness and completeness of our previous method. We then use the characterization of our training dataset to identify if a data-driven turbulence closure learned on it would generalize to an unseen flow configuration – an impinging jet in our case. Finally, we train a RANS closure architected as a neural network, and develop an explanation i.e., an interpretable approximation, using generalized linear mixed-effects models and check whether the explanation resembles a contemporary closure from turbulence modeling.

More Details
Results 1–25 of 228
Results 1–25 of 228