Publications

Results 26–44 of 44

Search results

Jump to search filters

Final Report of LDRD Project: An Electromagnetic Imaging System for Environmental Site Reconnaissance

Denison, Gary J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Rinehart, Larry F.; O'Malley, Martin W.; Zutavern, Fred J.

This report provides a summary of the LDRD project titled: An Electromagnetic Imaging System for Environmental Site Reconnaissance. The major initial challenge of this LDRD was to develop a ground penetrating radar (GPR) whose peak and average radiated power surpassed that of any other in existence. Goals were set to use such a system to detect the following: (1) disrupted soil layers where there is potential for buried waste, (2) buried objects such as 55-gallon drums at depths up to 3 m, and (3) detecting contaminated soil. Initial modeling of the problem suggested that for soil conditions similar to Puerto Rican clay loam, moisture content 10 percent (conductivity = 0.01 mhos at 350 MHz), a buried 55-gallon drum could be detected in a straightforward manner by an UWB GPR system at a depth of 3 meters. From the simulations, the highest attenuation ({minus}50 dB) was the result of scattering from a 3-m deep vertically orientated drum. A system loss of {minus}100 dB is a typical limit for all kinds of radar systems (either direct time-domain or swept frequency). The modeling work also determined that the waveshape of the pulse scattered off the buried drum would be relatively insensitive to drum orientation, and thus easier to detect with the GPR system.

More Details

Semiconductor e-h plasma lasers

Conference Digest - IEEE International Semiconductor Laser Conference

Zutavern, Fred J.; Baca, A.G.; Chow, Weng W.; Hafich, Michael J.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan M.; O'Malley, Martin W.; Vawter, Gregory A.

A new class of semiconductor lasers that can potentially produce much more short pulse energy is presented. This new laser is not limited in volume or aspect ratio by the depth of a p-n junction and are created from current filaments in semi-insulating GaAs. A current filament semiconductor lasers (CFSL) that have produced 75 nJ of 890 nm radiation in 1.5 ns were tested. A filaments as long as 3.4 cm and several hundred microns in diameter in high gain GaAs photoconductive switches were observed. Their smallest dimension can be more than 100 times the carrier diffusion length in GaAs. The spectral narrowing, lasing thresholds, beam divergence, temporal narrowing and energies which imply lasing for several configurations of CFSL are reported.

More Details

Doped contacts for high-longevity optically activated, high-gain gaas photoconductive Semiconductor Switches

IEEE Transactions on Plasma Science

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, Wesley D.; Brown, Darwin J.; Hjalmarson, Harold P.; Baca, A.G.

The longevity of high-gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs depends on the thickness of the doped layers and is at least 100 A for a dopant diffusion depth of 4 μm. This current could be increased by employing multiple switches connected in parallel. The contact metal has a different damage mechanism, and the threshold for damage (∼40-80 A) is not further improved beyond a dopant diffusion depth of about 2 μm. In a diffusion-doped contact switch, the switching performance is not degraded at the onset of contact metal erosion, unlike a switch with conventional contacts. For fireset applications operating at 1-kV/l-kA levels and higher, doped contacts have not yet resulted in improved longevity. We employ multifllament operation and InPb solder/Au ribbon wirebonding to demonstrate >100-shot lifetime at 1-kV/l-kA. © 2000 IEEE.

More Details

Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; Mar, Alan M.

The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently being channeled in the study related to improvements of these two parameters high bias operation and lifetime improvement for switches used in pulsed power applications. The contact material and profiles are another important area of study. Although these problems are being pursued through the incorporation of different contact materials and introducing doping near contacts, it is important that the switch properties and the conduction mechanism in these switches be well understood such that the basic nature of the problems can be properly addressed. In this paper the authors report on these two basic issues related to the device operation, i.e., mechanisms for increasing the hold-off characteristics through neutron irradiation, and the analysis of transport processes at varying field conditions in trap dominated SI GaAs in order to identify the breakdown mechanism during device operation. It is expected that this study would result in a better understanding of photoconductive switches, specifically those used in high power operation.

More Details

Temporal switching jitter in photoconductive switches

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, Wesley D.

This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

More Details

Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, Wesley D.; Brown, Darwin J.; Hjalmarson, Harold P.; Baca, A.G.

The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

More Details

Current Filament Semiconductor Lasers

Optics InfoBase Conference Papers

Zutavern, Fred J.; Baca, A.G.; Chow, Weng W.; Hafich, Michael J.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan M.; O'Malley, Martin W.; Vawter, Gregory A.

A new class of semiconductor laser is presented that does not require p-n junctions. Spectral narrowing, lasing thresholds, beam divergence, temporal narrowing, and energies are shown for these lasers based on current filaments in bulk GaAs.

More Details

Final report of LDRD project: Electromagnetic impulse radar for detection of underground structures

Loubriel, Guillermo M.

This report provides a summary of the LDRD project titled: Electromagnetic impulse radar for the detection of underground structures. The project met all its milestones even with a tight two year schedule and total funding of $400 k. The goal of the LDRD was to develop and demonstrate a ground penetrating radar (GPR) that is based on high peak power, high repetition rate, and low center frequency impulses. The idea of this LDRD is that a high peak power, high average power radar based on the transmission of short impulses can be utilized effect can be utilized for ground penetrating radar. This direct time-domain system the authors are building seeks to increase penetration depth over conventional systems by using: (1) high peak power, high repetition rate operation that gives high average power, (2) low center frequencies that better penetrate the ground, and (3) short duration impulses that allow for the use of downward looking, low flying platforms that increase the power on target relative to a high flying platform. Specifically, chirped pulses that are a microsecond in duration require (because it is difficult to receive during transmit) platforms above 150 m (and typically 1 km) while this system, theoretically could be at 10 m above the ground. The power on target decays with distance squared so the ability to use low flying platforms is crucial to high penetration. Clutter is minimized by time gating the surface clutter return. Short impulses also allow gating (out) the coupling of the transmit and receive antennas.

More Details

Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration

Loubriel, Guillermo M.

This report provides a summary of the Pulser In a Chip 9000-Discretionary LDRD. The program began in January of 1997 and concluded in September of 1997. The over-arching goal of this LDRD is to study whether laser diode triggered photoconductive semiconductor switches (PCSS) can be used to activate electro-optic devices such as Q-switches and Pockels cells and to study possible laser diode/switch integration. The PCSS switches we used were high gain GaAs switches because they can be triggered with small amounts of laser light. The specific goals of the LDRD were to demonstrate: (1) that small laser diode arrays that are potential candidates for laser-switch integration will indeed trigger the PCSS switch, and (2) that high gain GaAs switches can be used to trigger optical Q-switches in lasers such as the lasers to be used in the X-1 Advanced Radiation Source and the laser used for direct optical initiation (DOI) of explosives. The technology developed with this LDRD is now the prime candidate for triggering the Q switch in the multiple lasers in the laser trigger system of the X-1 Advanced Radiation Source and may be utilized in other accelerators. As part of the LDRD we developed a commercial supplier. To study laser/switch integration we tested triggering the high gain GaAs switches with: edge emitting laser diodes, vertical cavity surface emitting lasers (VCSELs), and transverse junction stripe (TJS) lasers. The first two types of lasers (edge emitting and VCSELs) did activate the PCSS but are harder to integrate with the PCSS for a compact package. The US lasers, while easier to integrate with the switch, did not trigger the PCSS at the US laser power levels we used. The PCSS was used to activate the Q-switch of the compact laser to be used in the X-1 Advanced Radiation Source.

More Details

Diamond switches for high temperature electronics

Loubriel, Guillermo M.

This paper presents the results of switching voltages of 500 V and currents of 10 A using chemical vapor deposited (CVD) diamond as a switching material. The switching is performed by using an electron beam that penetrates the diamond, creates electron hole pairs, and lowers its resistivity to about 20 {Omega}-cm and its resistance to about 4 {Omega}. Tests were performed at room temperature but in a configuration that allows for 250 C.

More Details

High gain GaAs photoconductive semiconductor switches for ground penetrating radar

IEEE Conference Record of Power Modulator Symposium

Loubriel, Guillermo M.

The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver high peak power, fast risetime pulses when triggered with small laser diode arrays makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for observation of large structures under ground because it can operate at low frequencies and at high average power. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss their use in a radar transmitter. We will also present a summary of an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end we developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

More Details

Diamond switches for high temperature electronics

Loubriel, Guillermo M.

Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

More Details

Influence of electrode geometry on the high-field characteristics of photoconductive silicon wafers

Loubriel, Guillermo M.

A series of experiment were conducted to study the influence of electrode geometry on the prebreakdown (and breakdown) characteristics of high resistivity ({rho} > 30 k{Omega}-cm), p-type Si wafers under quasi-uniform and non-uniform electric field configurations. In the quasi-uniform field configuration, the 1mm thick Si wafer was mounted between the slots of two plane parallel stainless steel disc electrodes (parallel), while the non-uniform field was obtained by mounting the wafer between two pillar-type electrodes with a hemispherical tip (pillar). The main objective of the above investigation was to verify if the uniform field configuration under a parallel system has a positive influence by reducing the field enhancement at the contact region, as opposed to the definite field enhancement present in the case of the non-uniform pillar system. Also, it was proposed to study the effect of the contact profile on the field distribution over the wafer surface and hence its influence on the high-field performance of the Si wafers.

More Details

The use of optically triggered, high gain GaAs switches for UWB pulse generation

Loubriel, Guillermo M.

A high peak power impulse pulser that is controlled with high gain, optically triggered GaAs Photoconductive Semiconductor Switches (PCSS) has been constructed and tested. The system has a short 50 {Omega} line that is charged to 100 kV and discharged through the switch when the switch is triggered with as little as 90 nJ of laser energy. The laser that is used is a small laser diode array whose output is delivered through a fiber to the switch. The current in the system ranges from 1 kA (with one laser) to 1.3 kA (with two) and the pulse widths are 1.9 and 1.4 ns, respectively. The peak power and the energy delivered to the load are 50 MW to 84 MW and 95 NJ to 120 mJ for one or two lasers. The small trigger energy and switch jitter are due to a high gain switching mechanism in GaAs. This experiment also shows a relationship between the rise time of the voltage across the switch and the required trigger energy and switch jitter.

More Details

Photoconductive semiconductor switches for pulsed power applications

IEEE International Pulsed Power Conference - Digest of Technical Papers

Loubriel, Guillermo M.

Photoconductive Semiconductor Switches (PCSS) are being used in, or tested for, many different pulsed power applications as diverse as ultrawideband (UWB) transmitters and high current pulsers. Some aspects of the switches that are relevant to most of the applications are: switch lifetime (longevity), switch opening time (related to the lifetime of carriers in the semiconductor), switching jitter, and the required laser energy. This paper will emphasize the results that we have obtained with Si switches for UWB applications. These include: measurement of switch longevity (a total of 80 Coulombs or 40 C/cm for a 2 cm wide switch and 18.4 Coulombs or 73 Coulombs/cm for a 0.25 cm wide switch), switching at high repetition rates (up to 540 Hz), measurement of carrier lifetime decay rates (a fast one of a few μs, and a slow one of about 330 μs), and measurements on the effect of neutron irradiation on carrier lifetimes. The total charge switched seems to be the highest ever reported for a PCSS. We have used these Si switches in a variety of circuits to produce: a monocycle with a period of about 10 ns corresponding to a center frequency of about 84 MHz, and ringing (many pulse) waveforms with periods of about 1 ns and 7.5 ns corresponding to center frequencies of 770 MHz and 133 MHz. We will also discuss recent studies on the switching properties of GaP.

More Details

Triggering GaAs lock-on switches with laser diode arrays

IEEE Conference Record of Power Modulator Symposium

Loubriel, Guillermo M.

The authors describe the progress that has led to the triggering of high-power photoconductive semiconductor switches (PCSSs) with laser diodes. An 850 W optical pulse from a laser diode array has been used to trigger a 1.5 cm long switch that delivered 8.5 MW to a 38.3 Ω load. Using 166 W arrays, a 2.5 mm long switch has been triggered, delivering 1.2 MW with 600 ps risetimes at pulse repetition frequencies of 1 kHz. These 2.5 mm long switches were tested for pulse lifetime and survived 105 pulses at 1.0 MW levels. In single pulse operation up to 600 A has been switched with laser diode arrays. The goal is to switch up to 5 kA in a single shot mode and up to 100 MW repetitively at up to 10 kHz. It is pointed out that these goals are feasible since the switches can be used in parallel or in series.

More Details
Results 26–44 of 44
Results 26–44 of 44