Publications

Results 1–25 of 40

Search results

Jump to search filters

Computational investigation of in-flight temperature in shaped charge jets and explosively formed penetrators

AIP Conference Proceedings

Sable, Peter; Helminiak, Nathaniel S.; Gullerud, Arne S.; Harstad, Eric N.; Hollenshead, Jeromy H.; Hertel, Eugene S.

With the increasing use of hydrocodes in modeling and system design, experimental benchmarking of software has never been more important. While this has been a large area of focus since the inception of computational design, comparisons with temperature data are sparse due to experimental limitations. A novel temperature measurement technique, magnetic diffusion analysis, has enabled the acquisition of in-flight temperature measurements of hyper velocity projectiles. Using this, an AC-14 bare shaped charge and an LX-14 EFP, both with copper linings, were simulated using CTH to benchmark temperature against experimental results. Particular attention was given to the slug temperature profiles after separation, and the effect of varying equation-of-state and strength models. Simulation fidelity to experiment was shown to greatly depend on strength model, ranging from better than 2% error to a worst case of 22%. This varied notably depending on the strength model used. Similar observations were made simulating the EFP case, with a minimum 4% deviation. Jet structures compare well with radiographic images and are consistent with ALEGRA simulations previously conducted. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-10009C.

More Details

Characterizing In-Flight Temperature of Shaped Charge Penetrators in CTH

Procedia Engineering

Sable, Peter A.; Helminiak, Nathaniel S.; Gullerud, Arne S.; Harstad, Eric N.; Hollenshead, Jeromy H.; Hertel, Eugene S.

With the increasing use of hydrocodes in modelling and system design, benchmarking of software against experiments has become even more vital. While substantial work has been done in this regard, comparisons with temperature data within dynamic experiments are sparse due to experimental limitations. However, novel developments in measurement techniques has enabled the in-flight acquisition of hypervelocity projectile temperature, providing a new source for validation. This is achieved by tracking the decay of an induced magnetic field which is related to conductivity and further correlated to material temperature. As such, an AC-14 bare shaped charge with a copper lining is simulated using CTH, and benchmarked against experimental temperature results observed by Uhlig and Hummer. Particular attention was given to the slug temperature profiles after separation, and the effect of varying equation-of-state and strength models. Simulations are in agreement with experimental results, with a best case of under 2% error between the observed and simulated temperatures for this shaped charge setup. This varied notably (around 20% variance) depending on strength model. Jet structures compare well with radiographic images and are consistent with ALEGRA simulations previously conducted. SAND2017-3686C.

More Details

Whipple Bumper Shield Simulations [Book Chapter]

Shock Compression of Condensed Matter–1991

Hertel, Eugene S.

The Whipple bumper is a space shield designed to protect a space station from the most hazardous orbital space debris environment. A series of numerical simulations has been performed using the multi-dimensional hydrodynamics code CTH to estimate the effectiveness of the thin Whipple bumper design. These simulations are performed for impact velocities of ~ 10 km/s which are now accessible by experiments using the Sandia hypervelocity launcher facility. For a ~ 10 km/s impact by a 0.7 gm aluminum flier plate, the experimental results indicate that the debris cloud resulting upon impact of the bumper shield by the flier plate, completely penetrates the sub-structure. The CTH simulations also predict complete penetration by the subsequent debris cloud.

More Details

University of Utah ASC site review. August 24-25, 2006

Hertel, Eugene S.

This report is a review of progress made by the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) at the University of Utah, during the ninth year (Fiscal 2006) of its existence as an activity funded by the Department of Energy's Advanced Simulation and Computing Program (ASC). The ten-member Review Team composed of the TST and AST spent two days (August 24-25, 2006) at the University, reviewing formal presentations and demonstrations by the C-SAFE researchers and conferring privately. The Review Team found that the C-SAFE project administrators and staff had prepared well for the review. C-SAFE management and staff openly shared extensive answers to unexpected questions and the advance materials were well prepared and very informative. We believe that the time devoted to the review was used effectively and hope that the recommendations included in this 2006 report will provide helpful guidance to C-SAFE personnel and ASC managers.

More Details
Results 1–25 of 40
Results 1–25 of 40