Publications

Results 26–50 of 194

Search results

Jump to search filters

Hydrogen Risk Assessment Models (HyRAM) (V.3.1) (Technical Reference Manual)

Ehrhart, Brian D.; Hecht, Ethan S.

The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM includes generic probabilities for hydrogen equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of hydrogen release and flame physics. HyRAM integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet res, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is developed at Sandia National Laboratories for the U.S. Department of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. HyRAM is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM version 3.1. There have been several impactful updates since version 3.0. HyRAM 3.1 contains a correction to use the volume fraction for two-phase speed of sound calculations; this only affects cryogenic releases in which two-phase ow (vapor and liquid) is predicted in the orifice. Other changes include clarifications that inputs for tank pressure should be given in absolute pressure, not gauge pressure. Additionally, the interface now rejects invalid inputs to probability distributions, and the less accurate single-point radiative source model selection was removed from the interface.

More Details

Validation and Comparison of HyRAM Physics Models

Ehrhart, Brian D.; Hecht, Ethan S.; Mohmand, Jamal A.

The Hydrogen Risk Assessment Models (HyRAM) software version 3 uses a real gas equation of state rather than the Abel-Noble equation of state that is used in 2.0 and previous versions. This change enables the use of HyRAM 3 for cryogenic hydrogen flows, whereas the Abel-Noble equation of state is not accurate at low temperatures. HyRAM 3.1 results were compared to experimental data from the literature in order to demonstrate the accuracy of the physics models. HyRAM 3.1 results were also compared to HyRAM 2.0 for high-pressure, non-cryogenic flows to highlight the differences in predictions between the two major versions of HyRAM. Validation data sets are from multiple groups and span the range of HyRAM physics models, including tank blowdown, unignited dispersion jet plume, ignited jet flame, and accumulation and overpressure inside an enclosure. Both versions 2.0 and 3.1 of HyRAM are accurate for predictions of blowdowns, diffusion jets, and diffusion flames of hydrogen at pressures up to 900 bar, and HyRAM 3.1 also shows good agreement with cryogenic hydrogen data. Overall, HyRAM 3.1 improves on the accuracy of the physical models relative to HyRAM 2.0. In most cases, this reduces the conservatism in risk calculations using HyRAM.

More Details

Characteristic of cryogenic hydrogen flames from high-aspect ratio nozzles

International Journal of Hydrogen Energy

Hecht, Ethan S.; Chowdhury, Bikram R.

Unintentional leaks at hydrogen fueling stations have the potential to form hydrogen jet flames, which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings, lot-lines, etc. The heat flux and visible flame length is well understood for releases from round nozzles, but real unintended leaks would be expected to be from higher aspect-ratio cracks. In this work, we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. Heat flux measurements from 5 radiometers were used to assess the single-point vs the multi-point methods for interpretation of heat flux sensor data, finding the axial distance of the sensor for a single-point heat flux measurement to be important. We compare the flame length and heat flux data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly, for a given mass flow under the range of conditions studied. The engineering correlations presented in this work enable the prediction of flame length and heat flux which can be used to assess risk at hydrogen fueling stations with liquid hydrogen and develop science-based separation distances for these stations.

More Details

Numerical predictions of cryogenic hydrogen vertical jets

International Journal of Hydrogen Energy

Giannissi, S.G.; Venetsanos, A.G.; Hecht, Ethan S.

Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refueling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates, the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved, while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However, for test with 3 and 4 bar release the concentration was overpredicted. Furthermore, a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally, a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.

More Details

Validation of two-layer model for underexpanded hydrogen jets

International Journal of Hydrogen Energy

Li, Xuefang; Chowdhury, Bikram R.; He, Qian; Christopher, David M.; Hecht, Ethan S.

Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.

More Details

Dispersion of cryogenic hydrogen through high-aspect ratio nozzles

International Journal of Hydrogen Energy

Chowdhury, Bikram R.; Hecht, Ethan S.

Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes, the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks, which would be expected to be cracks, rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation, the axis-switching phenomena was not observed, but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment.

More Details

Validation of the HyRAM+ physics models for use with propane

Blaylock, Myra L.; Hecht, Ethan S.; Shum, Jessica G.

The Hydrogen Risk Assessment Model Plus (HyRAM+) toolkit combines quantitative risk assessment with simulations of unignited dispersion, ignited turbulent diffusion flames, and indoor accumulation with delayed ignition of fuels. HyRAM+ is differentiated from HyRAM in that it includes models and leak data for other alternate fuels. The models of the physical phenomena need to be validated for each of the fuels in the toolkit. This report shows the validation for propane which is being used as a surrogate for autogas, which is a mixture of propane and butane and used in internal combustion engines in vehicles. For flame length comparisons, five previously published experiments from peer reviewed journals were used to validate our models. The validation looked at flame lengths and flame widths with respect to different leak diameters, mass flow rates, and source pressures. Most of the sources included more than one set of experimental data, which were collected using different methods (CCD cameras, IR visualization etc.). In general, HyRAM+ overpredicts the flame lengths by around 65%. For heat and radiation models, we compared the heat flux and radiation data reported from two different sources to the values calculated by HyRAM+. For higher mass flow rates, the HyRAM+ calculated flame length results gave a better estimate of what is found in the experiments (65% error), but a higher error (85%) is observed between the HyRAM+ calculated lengths and the experimental flame lengthsfor lower mass flows. Some differences can be attributed to outdoor environmental effects (i.e. wind speed) and uncertainties in jet flame shapes. The propane flame trajectory is predicted for a high Reynolds number case with Re = 12,500 and a low Reynolds number case where Re = 2,000. The Re=12,500 case which is momentum dominated matches well with the experimental flame trajectory, but the agreement for the bouancy driven low Reynolds number case is not as good. Dispersion modeling for unignited propane was also analyzed. We compared the mole fraction, mixture fraction, mean velocity, concentration half width, and inverse mass concentration over an axial distance from different credible journals to the values calculated by HyRAM+. The results display good agreement but generally, HyRAM+ predicts a wider profile for mole fraction and mixture fraction experiments. Overall, HyRAM+’s results are reasonable for predicting the flame length, heat flux, flame trajectory, and dispersion for propane and can be used in risk analyses

More Details

Dispenser Reliability: Materials R&D. A Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Report

Menon, Nalini C.; Hecht, Ethan S.

Dispensers are the top cause of maintenance events and down-time at hydrogen fueling stations. In an effort to help characterize and enable improvements in dispenser reliability, an extensive accelerated lifetime testing set-up was designed and built at NREL involving components typically part of dispensing operations at fueling stations. Device Under Test (DUTs) included different components such as normally open valves, normally closed valves, fueling nozzles, breakaways devices and filters. Conditions of testing included pressures, and flow rates similar to light duty fuel cell electric vehicles fueling at -40°C, and -20°C for thousands of cycles in hydrogen. Tested components (failed and non-failed) were disassembled at SNL and polymeric O-rings were carefully retrieved and cataloged for chemical and physical characterization. Data collected was compared to similar O-rings from unexposed or non-tested components for hydrogen effects, and failure modes. Degradation analyses, based on select polymer chemistries common across all component types, their location within components, visual assessment of damage coupled with strong hydrogen effects from chemical characterization, was completed and presented to NREL and DOE. Overall, the failure rate amongst the components was not as high as expected for the test conditions. Among the component types tested, breakaways were the most susceptible to damage under these test conditions, with fueling nozzles a close second. The proper combination of selection of the right polymer and optimum component design was found to make a strong difference in component reliability under severe dispenser operating conditions. Physical degradation of polymers, rather than chemical changes due to low temperature hydrogen exposure, is more prevalent as failure mode for these test conditions. The nature and the extent of the degradation was much less at -20°C as compared to -40°C. The damage and failure rates were higher at lower temperatures than at higher test temperatures. As expected, increasing the number of cycles at the lowest test temperature (-40°C) increased damage. This indicates that cycling at the low temperature of -40°C required by SAE J2601 can reduce component life in fuel dispensing operations

More Details
Results 26–50 of 194
Results 26–50 of 194