Swiler, Laura P.; Becker, Dirk-Alexander; Brooks, Dusty M.; Govaerts, Joan; Koskinen, Lasse; Plischke, Elmar; Rohlig, Klaus-Jurgen; Saveleva, Elena; Spiessl, Sabine M.; Stein, Emily S.; Svitelman, Valentina
Over the past four years, an informal working group has developed to investigate existing sensitivity analysis methods, examine new methods, and identify best practices. The focus is on the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have developed multiple case studies. Four of these case studies are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the different sensitivity analysis methods investigated by various groups, the results obtained by different groups and different implementations, and summarize our findings.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.
Stress corrosion cracking (SCC) is an important failure degradation mechanism for storage of spent nuclear fuel. Since 2014, Sandia National Laboratories has been developing a probabilistic methodology for predicting SCC. The model is intended to provide qualitative assessment of data needs, model sensitivities, and future model development. In fiscal year 2021, improvement of the SCC model focused on the salt deposition, maximum pit size, and crack growth rate models.
The use of evidence theory and associated cumulative plausibility functions (CPFs), cumulative belief functions (CBFs), cumulative distribution functions (CDFs), complementary cumulative plausibility functions (CCPFs), complementary cumulative belief functions (CCBFs), and complementary cumulative distribution functions (CCDFs) in the analysis of time and temperature margins associated with loss of assured safety (LOAS) for one weak link (WL)/two strong link (SL) systems is illustrated. Article content includes cumulative and complementary cumulative belief, plausibility, and probability for (i) SL/ WL failure time margins defined by (time at which SL failure potentially causes LOAS) - (time at which WL failure potentially prevents LOAS), (ii) SL/WL failure temperature margins defined by (the temperature at which SL failure potentially causes LOAS) - (the temperature at which WL failure potentially prevents LOAS), and (iii) SL/SL failure temperature margins defined by (the temperature at which SL failure potentially causes LOAS) - (the temperature of SL whose failure potentially causes LOAS at the time at which WL failure potentially prevents LOAS).
The use of evidence theory and associated cumulative plausibility functions (CPFs), cumulative belief functions (CBFs), cumulative distribution functions (CDFs), complementary cumulative plausibility functions (CCPFs), complementary cumulative belief functions (CCBFs), and complementary cumulative distribution functions (CCDFs) in the analysis of time and temperature margins associated with loss of assured safety (LOAS) for one weak link (WL)/two strong link (SL) systems is illustrated. Article content includes cumulative and complementary cumulative belief, plausibility, and probability for (i) SL/WL failure time margins defined by (time at which SL failure potentially causes LOAS) – (time at which WL failure potentially prevents LOAS), (ii) SL/WL failure temperature margins defined by (the temperature at which SL failure potentially causes LOAS) – (the temperature at which WL failure potentially prevents LOAS), and (iii) SL/SL failure temperature margins defined by (the temperature at which SL failure potentially causes LOAS) – (the temperature of SL whose failure potentially causes LOAS at the time at which WL failure potentially prevents LOAS).
The use of evidence theory and associated cumulative plausibility functions (CPFs), cumulative belief functions (CBFs), cumulative distribution functions (CDFs), complementary cumulative plausibility functions (CCPFs), complementary cumulative belief functions (CCBFs), and complementary cumulative distribution functions (CCDFs) in the analysis of loss of assured safety (LOAS) for weak link (WL)/strong link (SL) systems is introduced and illustrated. Article content includes cumulative and complementary cumulative belief, plausibility, and probability for (i) time at which LOAS occurs for a one WL/two SL system, (ii) time at which a two-link system fails, (iii) temperature at which a two-link system fails, and (iv) temperature at which LOAS occurs for a one WL/two SL system. The presented results can be generalized to systems with more than one WL and two SLs.
This analysis provides estimates on the leak frequencies of nine components found in liquefied natural gas (LNG) facilities. Data was taken from a variety of sources, with 25 different data sets included in the analysis. A hierarchical Bayesian model was used that assumes that the log leak frequency follows a normal distribution and the logarithm of the mean of this normal distribution is a linear function of the logarithm of the fractional leak area. This type of model uses uninformed prior distributions that are updated with applicable data. Separate models are fit for each component listed. Five order-of-magnitude fractional leak areas are considered, based on the flow area of the component. Three types of supporting analyses were performed: sensitivity of the model to the data set used, sensitivity of the leak frequency estimates to differences in the model structure or prior distributions, and sufficiency of sample sized used for convergence. Recommended leak frequency distributions for all component types and leak sizes are given. These leak frequency predictions can be used for quantitative risk assessments in the future.
The U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability Program is developing a new method to modernize how access delay timelines are developed and utilized in physical security system evaluations. This new method utilizes Bayesian methods to combine subject matter expert judgement and small performance test datasets in a consistent and defensible way. It will also allow a more holistic view of delay performance that provides distributions of task times and task success probabilities to account for tasks that, if failed, would result in failure of the attack. This paper describes the methodology and its application to an example problem, demonstrating that it can be applied to access delay timeline analyses to summarize delay performance using subjective and objective information.
High pressure Type 2 hoop-wrapped, thick-walled vessels are commonly used at hydrogen refueling stations. Vessels installed at stations circa 2010 are now reaching their design cycle limit and are being retired, which is the motivation for exploring life extension opportunities. The number of design cycles is based on a fatigue life calculation using a fracture mechanics assessment according to ASME Section VIII, Division 3, which assumes each cycle is the full pressure range identified in the User's Design Specification for a given pressure vessel design; however, assessment of service data reveals that the actual pressure cycles are more conservative than the design specification. A case study was performed in which in-service pressure cycles were used to re-calculate the design cycles. It was found that less than 1% of the allowable crack extension was consumed when crack growth was assessed using in-service design pressures compared to the original design fatigue life from 2010. Additionally, design cycles were assessed on the 2010 era vessels based on design curves from the recently approved ASME Code Case 2938, which were based on fatigue crack growth rate relationships over a broader range of K. Using the Code Case 2938 design curves yielded nearly 2.7 times greater design cycles compared to the 2010 vessel original design basis. The benefits of using inservice pressure cycles to assess the design life and the implications of using the design curves in Code Case 2938 are discussed in detail in this paper.
Nuclear power plants (NPPs) are considering flexible plant operations to take advantage of excess thermal and electrical energy. One option for NPPs is to pursue hydrogen production through high temperature electrolysis as an alternate revenue stream to remain economically viable. The intent of this study is to investigate the risk of a high temperature steam electrolysis hydrogen production facility (HTEF) in close proximity to an NPP. This analysis evaluates a postulated HTEF located 1 km from an NPP, including the likelihood of an accident and the associated consequence to critical NPP targets. This analysis shows that although the likelihood of a leak in an HTEF is not negligible, the consequence to critical NPP targets is not expected to lead to a failure at a distance of 1 km. Furthermore, the minimum separation distance of the HTEF is calculated based on the target fragility criteria of 1 psi defined in Regulatory Guide 1.91.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2020 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.