Publications

Results 26–42 of 42
Skip to search filters

Compact silicon photonic resonance-sssisted variable optical attenuator

Optics Express

Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Mookherjea, Shayan

A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

More Details

Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect

Optics Express

Wang, Xiaoxi; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Mookherjea, Shayan

Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

More Details

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Optics Express

Martinez, Nicolas J.D.; DeRose, Christopher T.; Brock, Reinhard W.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; Trotter, Douglas C.; Davids, Paul D.

We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

More Details

An adiabatic/diabatic polarization beam splitter

5th IEEE Photonics Society Optical Interconnects Conference, OI 2016

Cai, Hong; Boynton, Nicholas; Lentine, Anthony L.; Pomerene, Andrew P.; Trotter, Douglas C.; Starbuck, Andrew L.; Davids, Paul D.; DeRose, Christopher T.

We demonstrate an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic mode, and diabatic for the transverse electric mode. The PBS has a simple structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

More Details

Silicon photonics platform for national security applications

IEEE Aerospace Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.; Davids, Paul D.; Martinez, Nicolas J.D.; Zortman, William A.; Cox, Jonathan A.; Jones, Adam; Trotter, Douglas C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Savignon, Daniel J.; Bauer, Todd B.; Wiwi, Michael W.; Chu, Patrick B.

We review Sandia's silicon photonics platform for national security applications. Silicon photonics offers the potential for extensive size, weight, power, and cost (SWaP-c) reductions compared to existing III-V or purely electronics circuits. Unlike most silicon photonics foundries in the US and internationally, our silicon photonics is manufactured in a trusted environment at our Microsystems and Engineering Sciences Application (MESA) facility. The Sandia fabrication facility is certified as a trusted foundry and can therefore produce devices and circuits intended for military applications. We will describe a variety of silicon photonics devices and subsystems, including both monolithic and heterogeneous integration of silicon photonics with electronics, that can enable future complex functionality in aerospace systems, principally focusing on communications technology in optical interconnects and optical networking.

More Details

Energy-efficient, digitally-driven "fat pipe" silicon photonic circuit switch in the UCSD MORDIA data-center network

Optics InfoBase Conference Papers

Aguinaldo, Ryan; Forencich, Alex; DeRose, Christopher T.; Lentine, Anthony L.; Trotter, Douglas C.; Starbuck, Andrew L.; Fainman, Yeshaiahu; Porter, George; Papen, George; Mookherjea, Shayan

Using a compact (0.03 mm2) silicon photonic thermo-optic switch with five cascaded thermotopic phase-shifters, we demonstrate low insertion loss, low power, microsecond-scale cross-bar switching of twenty wavelength channels, each carrying 10 Gbit/second data concurrently. © 2014 OSA.

More Details
Results 26–42 of 42
Results 26–42 of 42