Hydrogen-Assisted Fracture of a Cr-Mo Steel for High-Pressure Gas Containment
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASM Proceedings of the International Conference: Trends in Welding Research
Tubular specimens of the nitrogen-strengthened alloy 21Cr-6Ni-9Mn were instrumented with thermocouples and inertia welded using a wide range of axial forces and kinetic energies. It was determined that a linear relationship exists between upset and kinetic energy for a given axial force. Furthermore, the peak temperatures are inversely related to the applied axial force. Microstructural characterization was performed using optical and electron microscopy techniques. Ferrite was observed locally at the weld interface, and it was determined that the width of the ferrite zone could vary widely depending on the process parameters. Electron backscattered diffraction analysis revealed that the ferrite and austenite at the weld interface exhibit the Kurdjumov-Sachs orientation relationship, and suggests that a very large amount of ferrite is present during the welding process that subsequently transforms to austenite during cooling. The fracture toughness of inertia welds thermally charged in gaseous hydrogen was also measured. It was found that the hydrogen-assisted fracture susceptibility of the inertia welds was greater than that of the base metal, but less than that of 21Cr-6Ni-9Mn gas tungsten arc welds. Copyright © 2006 ASM International®.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The objective of this study was to quantify the hydrogen-assisted fracture susceptibility of gas-tungsten arc (GTA) welds in the nitrogen-strengthened, austenitic stainless steels 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). In addition, mechanisms of hydrogen-assisted fracture in the welds were identified using electron microscopy and finite-element modeling. Elastic-plastic fracture mechanics experiments were conducted on hydrogen-charged GTA welds at 25 C. Results showed that hydrogen dramatically lowered the fracture toughness from 412 kJ/m{sup 2} to 57 kJ/m{sup 2} in 21-6-9 welds and from 91 kJ/m{sup 2} to 26 kJ/m{sup 2} in 22-13-5 welds. Microscopy results suggested that hydrogen served two roles in the fracture of welds: it promoted the nucleation of microcracks along the dendritic structure and accelerated the link-up of microcracks by facilitating localized deformation. A continuum finite-element model was formulated to test the notion that hydrogen could facilitate localized deformation in the ligament between microcracks. On the assumption that hydrogen decreased local flow stress in accordance with the hydrogen-enhanced dislocation mobility argument, the finite-element results showed that deformation was localized in a narrow band between two parallel, overlapping microcracks. In contrast, in the absence of hydrogen, the finite-element results showed that deformation between microcracks was more uniformly distributed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.