Publications

Results 51–75 of 98

Search results

Jump to search filters

Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak

Brozik, Susan M.; Polsky, Ronen; Campbell, Deanna M.; Manginell, Ronald; Moorman, Matthew W.; Edwards, Thayne L.; Anderson, John M.; Pfeifer, Kent B.; Branch, Darren W.; Wheeler, David R.

More Details

Accelerating the development of transparent graphene electrodes through basic science driven chemical functionalization

Chan, Calvin; Beechem, Thomas E.; Ohta, Taisuke; Brumbach, Michael T.; Wheeler, David R.

Chemical functionalization is required to adapt graphenes properties to many applications. However, most covalent functionalization schemes are spontaneous or defect driven and are not suitable for applications requiring directed assembly of molecules on graphene substrates. In this work, we demonstrated electrochemically driven covalent bonding of phenyl iodoniums onto epitaxial graphene. The amount of chemisorption was demonstrated by varying the duration of the electrochemical driving potential. Chemical, electronic, and defect states of phenyl-modified graphene were studied by photoemission spectroscopy, spatially resolved Raman spectroscopy, and water contact angle measurement. Covalent attachment rehybridized some of the delocalized graphene sp2 orbitals to localized sp3 states. Control over the relative spontaneity (reaction rate) of covalent graphene functionalization is an important first step to the practical realization of directed molecular assembly on graphene. More than 10 publications, conference presentations, and program highlights were produced (some invited), and follow-on funding was obtained to continue this work.

More Details

Development of chemiresponsive sensors for detection of common homemade explosives

Brotherton, Christopher M.; Wheeler, David R.

Field-structured chemiresistors (FSCRs) are polymer based sensors that exhibit a resistance change when exposed to an analyte of interest. The amount of resistance change depends on the polymer-analyte affinity. The affinity can be manipulated by modifying the polymer within the FSCRs. In this paper, we investigate the ability of chemically modified FSCRs to sense hydrogen peroxide vapor. Five chemical species were chosen based on their hydrophobicity or reactivity with hydrogen peroxide. Of the five investigated, FSCRs modified with allyl methyl sulfide exhibited a significant response to hydrogen peroxide vapor. Additionally, these same FSCRs were evaluated against a common interferrant in hydrogen peroxide detection, water vapor. For the conditions investigated, the FSCRs modified with allyl methyl sulfide were able to successfully distinguish between water vapor and hydrogen peroxide vapor. A portion of the results presented here will be submitted to the Sensors and Actuators journal.

More Details

Nanoparticle modifications of photodefined nanostructures for energy applications

Burckel, David B.; Wheeler, David R.; Washburn, Cody; Brozik, Susan M.

The advancement of materials technology towards the development of novel 3D nanostructures for energy applications has been a long-standing challenge. The purpose of this project was to explore photolithographically defineable pyrolyzed photoresist carbon films for possible energy applications. The key attributes that we explored were as follows: (1) Photo-interferometric fabrication methods to produce highly porous (meso, micro, and nano) 3-D electrode structures, and (2) conducting polymer and nanoparticle-modification strategies on these structures to provide enhanced catalytic capabilities and increase conductivity. The resulting electrodes were then explored for specific applications towards possible use in battery and energy platforms.

More Details

Bio-inspired nanocomposite assemblies as smart skin components

Frischknecht, Amalie L.; Edwards, Thayne L.; Achyuthan, Komandoor; Wheeler, David R.; Brozik, Susan M.

There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.

More Details
Results 51–75 of 98
Results 51–75 of 98