Publications

Results 1–25 of 27

Search results

Jump to search filters

Argillite Disposal R&D International Collaborations Interim Report (2019)

Jove Colon, Carlos F.; Payne, Clay P.; Coker, Eric N.; Boisvert, Lydia B.; Sanchez, Amanda C.; Knight, Andrew W.; Hadgu, Teklu H.

The following interim report describes updates to ongoing international collaboration activities pertaining the FEBEX-DP and DECOVALEX Task C projects. Descriptions of these underground research laboratory (URL) activities are given in Jové Coke et al. (2018) but will repeated here for completeness. The 2018 status of work conducted at Sandia National Laboratories (SNL) on these two activities has been described in Jové Coke et al. (2018) and were summarized along with other international collaboration activities in Birkholzer et al. (2018).

More Details

Combined computational and experimental study of zirconium tungstate

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Kim, Eunja; Gordon, Margaret E.; Weck, Philippe F.; Greathouse, Jeffery A.; Meserole, S.P.; Rodriguez, Mark A.; Payne, Clay P.; Bryan, Charles R.

We have investigated cubic zirconium tungstate (ZrW2O8) using density functional perturbation theory (DFPT), along with experimental characterization to assess and validate computational results. Cubic zirconium tungstate is among the few known materials exhibiting isotropic negative thermal expansion (NTE) over a broad temperature range, including room temperature where it occurs metastably. Isotropic NTE materials are important for technological applications requiring thermal-expansion compensators in composites designed to have overall zero or adjustable thermal expansion. While cubic zirconium tungstate has attracted considerable attention experimentally, a very few computational studies have been dedicated to this well-known NTE material. Therefore, spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of the calculated infrared, Raman, and phonon density-of-state spectra has been made with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements. The thermal evolution of the lattice parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed negative thermal expansion characteristics of cubic zirconium tungstate, α-ZrW2O8. These results show that this DFPT approach can be used for studying the spectroscopic, mechanical and thermodynamic properties of prospective NTE ceramic waste forms for encapsulation of radionuclides produced during the nuclear fuel cycle.

More Details

Potential use of novel Zr-P-W wasteforms for radionuclide waste streams

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Bryan, Charles R.; Gordon, Margaret E.; Weck, Philippe F.; Greathouse, Jeffery A.; Kim, Eunja; Payne, Clay P.

Appropriate waste-forms for radioactive materials must isolate the radionuclides from the environment for long time periods. To accomplish this typically requires low waste-form solubility, to minimize radionuclide release to the environment. However, radiation eventually damages most waste-forms, leading to expansion, crumbling, increased exposed surface area, and faster dissolution. We have evaluated the use of a novel class of materials-ZrW2O8, Zr2P2WO12 and related compounds-that contract upon amorphization. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center-loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. We have synthesized these phases and have evaluated their leach rates. Tungsten forms stable aqueous species at neutral to basic conditions, making it a reliable indicator of phase dissolution. ZrW2O8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten release rates from Zr2P2WO12 rapidly drop and are tied to P release rates; we speculate that a low-solubility protective Zr-phosphate leach layer forms, slowing further dissolution.

More Details

Chemical-Mechanical Modeling of Subcritical-to-Critical Fracture in Geomaterials

Criscenti, Louise C.; Rimsza, Jessica R.; Jones, Reese E.; Matteo, Edward N.; Payne, Clay P.

Predicting chemical-mechanical fracture initiation and propagation in materials is a critical problem, with broad relevance to a host of geoscience applications including subsurface storage and waste disposal, geothermal energy development, and oil and gas extraction. In this project, we have developed molecular simulation and coarse- graining techniques to obtain an atomistic-level understanding of the chemical- mechanical mechanisms that control subcritical crack propagation in materials under tension and impact the fracture toughness. We have applied these techniques to the fracture of fused quartz in vacuum, in distilled water, and in two salt solutions - 1M NaC1, 1M NaOH - that form relatively acidic and basic solutions respectively. We have also established the capability to conduct double-compression double-cleavage experiments in an environmental chamber to observe material fracture in aqueous solution. Both simulations and experiments indicate that fractures propagate fastest in NaC1 solutions, slower in distilled water, and even slower in air.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove Colon, Carlos F.; Payne, Clay P.; Knight, Andrew W.; Ho, Tuan A.; Rutqvist, Jonny; Kim, Kunwi; Xu, Hao; Guglielmi, Yves; Birkholzer, Jens; Caporuscio, Florie; Sauer, Kirsten B.; Rock, M.J.; Houser, L.M.; Jerden, James; Gattu, Vineeth K.; Ebert, William

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of nuclear waste disposition in deep clay/shale/argillaceous rock. Interactional collaboration activities such as heater tests, particularly postmortem sample recovery and analysis, have elucidated important information regarding changes in engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of bentonite material from such tests has been key to the characterization of thermal effects affecting clay composition, sorption behavior, and swelling. These are crucial to evaluating the nature and extent of bentonite barrier sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development and validation of THMC simulators to model near-field coupled processes affecting engineered and natural barrier materials, particularly during the thermal period. This information leads to the development of simulation approaches (e.g., continuum vs. discrete) to tackle issues related to flow and transport depending on the nature of the host-rock and EBS design concept. This report describes R&D efforts on disposal in argillaceous geologic media through developments of coupled THMC process models, hydrothermal experiments and characterization of clay/metal barrier material interactions, and spent fuel and canister material degradation. Currently, the THM modeling focus is on heater test experiments in argillite rock and gas migration in bentonite as part of international collaboration activities at underground research laboratories (URLs). In addition, field testing at an URL involves probing of fault movement and characterization of fault permeability changes. Analyses of barrier samples (bentonite) from heater tests at URLs provide compositional and structural data to evaluate changes in clay swelling and thermal behavior with distance from the heater surface. Development of a spent fuel degradation model coupled with canister corrosion effects has been centered towards its integration with Generic Disposal System Analysis (GDSA) to describe source term behavior. As in previous milestone deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.

More Details

International Collaboration Activities on Engineered Barrier Systems

Jove Colon, Carlos F.; Payne, Clay P.; Knight, Andrew W.

International collaborations on nuclear waste disposal is an integral part of the Spent Fuel Waste Science and Technology (SFWST) campaign within the DOE Fuel Cycle and Technology (FCT) program. These engagements with international repository R&D programs provide key opportunities to participate in experiments with international partners on research investigations developing laboratory/field (underground research laboratories (URL) experiments) data of engineered barrier system (EBS) components (e.g., near-field) and characterization of transport phenomena in the host rock (e.g., far-field). The results of these field and laboratory experiments are used in the evaluation of coupled processes and the development of state-of-the-art simulation approaches to evaluate repository performance. Thermal heating from radionuclide decay in the waste canisters will increase temperature in the surrounding EBS driving chemical and transport processes in the near- and far-field domains of the repository. URL heater-tests for extended periods of times (e.g., years) provide key information and data of thermal effects on barrier responses to temperature and water saturation levels.

More Details

Infrared and Raman spectroscopy of α-ZrW2O8: A comprehensive density functional perturbation theory and experimental study

Journal of Raman Spectroscopy

Weck, Philippe F.; Gordon, Margaret E.; Greathouse, Jeffery A.; Bryan, Charles R.; Meserole, Stephen M.; Rodriguez, Mark A.; Payne, Clay P.; Kim, Eunja

Cubic zirconium tungstate (α-ZrW2O8), a well-known negative thermal expansion material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Using combined Fourier transform infrared measurements and DFPT calculations, new and extensive assignments were made for the far-infrared (<400 cm−1) spectrum of α-ZrW2O8. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the superior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations for studying the spectroscopic properties of this material.

More Details

Density Functional Perturbation Theory Analysis of Negative Thermal Expansion Materials: A Combined Computational and Experimental Study of α-ZrW2O8

Journal of Physical Chemistry. C

Weck, Philippe F.; Gordon, Margaret E.; Bryan, Charles R.; Greathouse, Jeffery A.; Meserole, Stephen M.; Rodriguez, Mark A.; Payne, Clay P.; Kim, Eunja

Cubic zirconium tungstate (α-ZrW2O8), a notorious negative thermal expansion (NTE) material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the supe-rior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed NTE characteristics of α-ZrW2O8. The standard molar heat capacity is predicted to be C$0\atop{P}$=193.8 and 192.2 J.mol-1.K-1 with PBE and PBEsol, respectively, ca. 7% lower than calorimetric data. In conclusion, these results demonstrate the accuracy of the DFPT/PBEsol approach for studying the spectroscopic, mechanical and thermodynamic properties of materials with anomalous thermal expansion.

More Details
Results 1–25 of 27
Results 1–25 of 27