Publications

Results 76–100 of 104

Search results

Jump to search filters

Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors

King, Bruce H.; Burton, Patrick D.; Hansen, Clifford H.; Jones, Christian B.

The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

More Details

Final Technical Report: Characterizing Emerging Technologies

King, Bruce H.; Hansen, Clifford H.; Stein, Joshua S.; Riley, Daniel R.; Gonzalez, Sigifredo G.

The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

More Details

Quantification of a Minimum Detectable Soiling Level to Affect Photovoltaic Devices by Natural and Simulated Soils

IEEE Journal of Photovoltaics

Burton, Patrick D.; Boyle, Liza; Griego, James J.M.; King, Bruce H.

Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence but remain difficult to quantify. In order to more accurately describe the specific effects of sparse soil films on PV systems, we have expanded upon an earlier technique to measure the optical losses due to an artificially applied obscurant film. A synthetic soil analog was sprayed onto glass coupons at very brief intervals with a high-volume, low-pressure pneumatic sprayer. Light transmission through the grime film was evaluated using a quantum efficiency test stand and UV/vis spectroscopy. A 0.1-g/m 2 grime loading was determined to be the limit of mass measurement sensitivity, which is similar to some reports of daily soil accumulation. Predictable, linear decreases in transmission were observed for samples with a mass loading between 0.1 and 0.5 g/m2. A similar change was observed for soiled coupons from an outdoor monitoring station. Collected soil from the field coupons was analyzed to develop a compositional analog for indoor studies. Natural and synthetic soils produced similar decreases in transmission.

More Details

Predicting the spectral effects of soils on high concentrating photovoltaic systems

Solar Energy

Burton, Patrick D.; King, Bruce H.; Riley, Daniel R.

Soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We have predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. The wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

More Details

Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

Solar Energy

Burton, Patrick D.; King, Bruce H.; Riley, Daniel R.

The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

More Details

Photovoltaic Microinverter Testbed for Multiple Device Interoperability

Quiroz, Jimmy E.; Gonzalez, Sigifredo G.; King, Bruce H.; Riley, Daniel R.; Johnson, Jay; Stein, Joshua S.

IEEE Standard 1547-2003 conformance of several interconnected microinverters was performed by Sandia National Laboratories (SNL) to determine if there were emergent adverse behaviors of co-located aggregated distributed energy resources. Experiments demonstrated the certification tests could be expanded for multi-manufacturer microinverter interoperability. Evaluations determined the microinverters' response to abnormal conditions in voltage and frequency, interruption in grid service, and cumulative power quality. No issues were identified to be caused by the interconnection of multiple devices.

More Details

Determination of a minimum soiling level to affect photovoltaic devices

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Burton, Patrick D.; King, Bruce H.

Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence, but remain difficult to quantify. In order to more accurately describe the specific effects of sparse soil films on PV systems, we have expanded upon an earlier technique to measure the optical losses due to an artificially applied obscurant film. A synthetic soil analogue consisting of AZ road dust and soot in acetonitrile carrier solvent was sprayed onto glass coupons at very brief intervals with a high volume, low pressure pneumatic sprayer. Light transmission through the grime film was evaluated using a QE test stand and UV/vis spectroscopy. A 0.1 g/m2 grime loading was determined to be the limit of mass measurement sensitivity, which is similar to some reports of daily soil accumulation. Predictable, linear decreases in transmission were observed for samples with a mass loading between 0.1 and 0.5 g/m2. Reflectance measurements provided the best means of easily distinguishing this sample from a reference.

More Details

A Handbook on Artificial Soils for Indoor Photovoltaic Soiling Tests

Burton, Patrick D.; King, Bruce H.

This manuscript is intended to serve as a practical guide to conducting repeatable indoor soiling experiments for PV applications. An outline of techniques, materials and equipment used in prior studies [1-3] is presented. Additional recommendations and practical guidance has been presented. Major sections include techniques to formulate soil simulants, ('standard grime') and feedstocks from traceable components, spray application, and quantitative measurement methodologies at heavy and minimal soil loadings.

More Details

Spectral sensitivity of simulated photovoltaic module soiling for a variety of synthesized soil types

IEEE Journal of Photovoltaics

Burton, Patrick D.; King, Bruce H.

The accumulation of soil on photovoltaic (PV) modules may introduce a spectral loss due to the color profile of the accumulated material. In order to compare the spectral and total losses experienced by a cell, soil analogs were formulated to contain common mineral pigments (Fe-2O 3 and göthite) with previously developed 'standard grime' mixtures. These mixtures simulated a wide range of desert soil colors and were applied to glass test coupons. The light transmission through the deposited film was evaluated by UV/vis/NIR spectroscopy and by placing the coupon over a test cell in a 1-sun simulator and quantum efficiency test stand. Distinct peaks in the 300-600-nm range were observed by UV/vis/NIR spectroscopy corresponding to the Fe 2 O3 and göthite. Approximately analogous features were noted in the QE measurement. Overall comparisons were made by integrating the response of a soiled coupon relative to a clean reference. Soils rich in red pigments (Fe2 O3) caused a greater integrated response than soils rich in yellow pigment (göthite). The yellow soils caused a greater attenuation in a specific region of the spectrum (300-450 nm), which may have significant implications to specific devices, such as multijunction and CdTe technologies. © 2011-2012 IEEE.

More Details

Spectral derates phenomena of atmospheric components on multi-junction CPV technologies

AIP Conference Proceedings

Armijo, Kenneth M.; Harrison, Richard K.; King, Bruce H.; Martin, Jeffrey B.

The solar spectrum varies with atmospheric conditions and composition, and can have significant impacts on the output power performance of each junction in a concentrating solar photovoltaic (CPV) system, with direct implications on the junction that is current-limiting. The effect of changing solar spectrum on CPV module power production has previously been characterized by various spectral performance parameters such as air mass (AM) for both single and multi-junction module technologies. However, examinations of outdoor test results have shown substantial uncertainty contributions by many of these parameters, including air mass, for the determination of projected power and energy production. Using spectral data obtained from outdoor spectrometers, with a spectral range of 336nm-1715nm, this investigation examines precipitable water (PW), aerosol and dust variability effects on incident spectral irradiance. This work then assesses air mass and other spectral performance parameters, including a new atmospheric component spectral factor (ACSF), to investigate iso-cell, stacked multijunction and single-junction c-Si module performance data directly with measured spectrum. This will then be used with MODTRAN5® to determine if spectral composition can account for daily and seasonal variability of the short-circuit current density Jsc and the maximum output power Pmp values. For precipitable water, current results show good correspondence between the modeled atmospheric component spectral factor and measured data with an average rms error of 0.013, for all three iso-cells tested during clear days over a one week time period. Results also suggest average variations in ACSF factors with respect to increasing precipitable water of 8.2%/cmH2O, 1.3%/cmH2O, 0.2%/cmH2O and 1.8%/cmH2O for GaInP, GaAs, Ge and c-Si cells, respectively at solar noon and an AM value of 1.0. For ozone, the GaInP cell had the greatest sensitivity to increasing ozone levels with an ACSF variation of 0.07%/cmO3. For the desert dust wind study, consistent ACSF behavior between all iso-cells and c-Si was found, with only significant reductions beyond 40mph.

More Details

Artificial soiling of photovoltaic module surfaces using traceable soil components

Conference Record of the IEEE Photovoltaic Specialists Conference

Burton, Patrick D.; King, Bruce H.

Effective evaluation and prediction of photovoltaic performance loss due to soiling requires consistent test methods. Natural grime accumulation is time-consuming and location-specific, and thus does not provide reproducible results across different geographic regions. Therefore, we have demonstrated a technique to apply artificial soiling with NIST-traceable components using an aerosol spray technique. This approach produces consistent soil coatings which were directly correlated to performance loss of multicrystalline Si cells in a laboratory setting. By tailoring the composition of the test blend, termed 'standard grime', the loss due to soiling can be effectively predicted over a range of mass loadings and soil types. © 2013 IEEE.

More Details
Results 76–100 of 104
Results 76–100 of 104