Publications

Results 76–100 of 275

Search results

Jump to search filters

UQTk (V. 3.0) User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Chowdhary, Kamaljit S.; Castorena, Sarah; De Bord, Sarah; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Exploring the Interplay of Resilience and Energy Consumption for a Task-Based Partial Differential Equations Preconditioner

Rizzi, Francesco N.; Laros, James H.; Sargsyan, Khachik S.; Mycek, Paul; Safta, Cosmin S.; Le Maitre, Olivier; Knio, Omar; Debusschere, Bert D.

We discuss algorithm-based resilience to silent data corruption (SDC) in a task- based domain-decomposition preconditioner for partial differential equations (PDEs). The algorithm exploits a reformulation of the PDE as a sampling problem, followed by a solution update through data manipulation that is resilient to SDC. The implementation is based on a server-client model where all state information is held by the servers, while clients are designed solely as computational units. Scalability tests run up to ~ 51 K cores show a parallel efficiency greater than 90%. We use a 2D elliptic PDE and a fault model based on random single bit-flip to demonstrate the resilience of the application to synthetically injected SDC. We discuss two fault scenarios: one based on the corruption of all data of a target task, and the other involving the corruption of a single data point. We show that for our application, given the test problem considered, a four-fold increase in the number of faults only yields a 2% change in the overhead to overcome their presence, from 7% to 9%. We then discuss potential savings in energy consumption via dynamics voltage/frequency scaling, and its interplay with fault-rates, and application overhead.

More Details
Results 76–100 of 275
Results 76–100 of 275