Clay Seam Laboratory Testing
Abstract not provided.
Abstract not provided.
This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.
Abstract not provided.
Experimental measurements of room closure in salt repositories are valuable for understanding the evolution of the underground and for validating geomechanical models. Room closure was measured during a number of experiments at the Waste Isolation Pilot Plant (WIPP) during the 1980's and 1990's. Most rooms were excavated using a multi-pass mining sequence, where each pass necessarily destroyed some of the mining sequence closure measurement points. These destroyed points were promptly reinstalled to capture the closure after the mining pass. After the room was complete, the mining sequence closure measurement stations were supplemented with remotely read closure measurement stations. Although many aspects of these experiments were thoroughly documented, the digital copies of the closure data were inadvertently destroyed, the non-trivial process of zeroing and shifting the raw closure measurements after each mining pass was not precisely described, the various closure measurements within a given room were not directly compared on the same plot, and the measurements were collected for several years longer than previously reported. Consequently, the hand-written mining sequence closure measurements for Rooms D, B, G, and Q were located in the WIPP archives, digitized, and reanalyzed for this report. The process of reconstructing the mining sequence closure histories was documented in detail and the raw data can be found in the appendices. Within the mid-section of a given room, the reconstructed closure histories were largely consistent with other mining sequence and remotely read closure histories, which builds confidence in the experiments and suggests that plane strain is an appropriate modeling assumption. The reconstructed closure histories were also reasonably consistent with previously published results, except in one notable case: the reconstructed Room Q closure histories 30 days after excavation were about 45 % less than the corresponding closures reported in Munson's 1997 capstone paper.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented
In Germany, rock salt formations are a possible host rock taken into account for the safe disposal of heat-emitting radioactive waste. With respect to crushed salt will be used in the repository for backfilling of open cavitied (using dry material). With time, the crushed salt will be compacted by the convergence of the host rock and reaches porosities comparable with the rock salts. The compaction behaviour of crushed salt has been investigated within the last 40 years, however, its behaviour at low porosities and the resulting low permeabilities becomes relevant with the introduction of the approach of the containment providing rock zone. In the current state, the database and process understanding have some important gaps in knowledge referring the material behaviour, existing laboratory and numerical models, especially for the porosity range. The objective of this project was the development of methods and strategies for the reduction of deficits in the prediction of crushed salt compaction leading to an improvement of the prognosis quality. It includes the development of experimental methods for determining crushed salt properties in the range of low porosities, the enhancement of process understanding and the investigation and development of existing numerical models.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
International Journal of Solids and Structures
The tensile response of superelastic shape memory alloys (SMAs) has been widely studied, but detailed experimental studies under multi-axial loading are relatively rare. In Part I, we present the isothermal responses of commercially-available superelastic NiTi tubes for a series of proportional stretch-twist controlled histories, spanning pure tension to simple torsion to pure compression. These axial-shear responses are used to quantify the onset and saturation during forward (loading) and reverse (unloading) stress-induced transformations for the first time. Each of the four transformation surfaces is well-captured by a smooth (three-parameter) ellipse in both strain and stress space. A simple Gibbs free energy model is presented to show how the driving force for phase transformation is approximately constant across all proportional strain paths and how the stress and strain transformation surfaces are conjugate to one another. In addition, transformation kinetics and surface strain morphologies are characterized by stereo digital image correlation (DIC). Under extension at low amounts of twist, stress-induced transformation involves strain localization in helical bands that evolve into axial propagation of ring-like transformation fronts with fine criss-crossing fingers (similar to those seen by Q. P. Sun and co-workers in pure extension). However, at large amounts of twist, including simple torsion and pure torsion, we report a new transformation morphology, involving strain localization along nearly longitudinal bands in the tube. The sequel (Part II) will address the response to non-proportional stretch-twist paths. Together, these detailed multi-axial results advance the scientific understanding of superelasticity and inform efforts to develop high-fidelity SMA constitutive models and simulation tools.
Abstract not provided.
This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
54th U.S. Rock Mechanics/Geomechanics Symposium
Room ceilings and walls at the Waste Isolation Pilot Plant tend to collapse over time, causing rubble piles on floors of empty rooms. The surrounding rock formation will gradually compact these rubble piles until they eventually become solid salt, but the length of time for a rubble pile to reach a certain porosity and permeability is unknown. This paper details the initial model development to predict the porosity and fluid flow network of a closing empty room. Conventional geomechanical numerical methods would struggle to model empty room collapse and rubble pile consolidation, so three different meshless methods, the Immersed Isogeometric Analysis (IGA) Meshfree Method, Reproducing Kernel Particle Method (RKPM), and Conformal Reproducing Kernel (CRK) method, were assessed. First, each meshless method simulated gradual room closure, without ceiling or wall collapse. All methods produced equivalent predictions to a finite element method reference solution, with comparable computational speed. Second, the Immersed IGA Meshfree method and RKPM simulated two-dimensional empty room collapse and rubble pile consolidation. Both methods successfully simulated large viscoplastic deformations, fracture, and rubble pile rearrangement to produce qualitatively realistic results. Finally, the meshless simulation results helped identify a mechanism for empty room closure that had been previously overlooked.
The Waste Isolation Pilot Plant (WIPP) is a geologic repository for defense-related nuclear waste. If left undisturbed, the virtually impermeable rock salt surrounding the repository will isolate the nuclear waste from the biosphere. If humans accidentally intrude into the repository in the future, then the likelihood of a radionuclide release to the biosphere will depend significantly on the porosity and permeability of the repository itself. Room ceilings and walls at the WIPP tend to collapse over time, causing rubble piles to form on floors of empty rooms. The surrounding rock formation will gradually compact these rubble piles until they eventually become solid salt, but the length of time for a rubble pile to reach a certain porosity and permeability is unknown. This report details the first efforts to build models to predict the porosity and permeability evolution of an empty room as it closes. Conventional geomechanical numerical methods would struggle to model empty room collapse and rubble pile consolidation, so three different meshless methods, the Immersed Isogeometric Analysis Meshfree, Reproducing Kernel Particle Method (RKPM), and the Conformal Reproducing Kernel method, were assessed. First, the meshless methods and the finite element method each simulated gradual room closure, without ceiling or wall collapse. All three methods produced equivalent room closure predictions with comparable computational speed. Second, the Immersed Isogeometric Analysis Meshfree method and RKPM simulated two-dimensional empty room collapse and rubble pile consolidation. Both methods successfully simulated large viscoplastic deformations, fracture, and rubble pile rearrangement to produce qualitatively realistic results. In addition to geomechanical simulations, the flow channels in damaged salt and crushed salt were measured using micro-computed tomography, and input into a computational fluid dynamics simulation to predict the salt's permeability. Although room for improvement exists, the current simulation approaches appear promising.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Bedded salt contains interfaces between the host salt and other in situ materials such as clay seams, or different impurities such as anhydrite or polyhalite in contact with the salt. These inhomogeneities are thought to have first-order effects on the closure of nearby drifts and potential roof collapses. Despite their importance, characterizations of the peak shear strength and residual shear strength of interfaces in salt are extremely rare in the published literature. This paper presents results from laboratory experiments designed to measure the mechanical behavior of a bedding interface or clay seam as it is sheared. The series of laboratory direct shear tests reported in this paper were performed on several samples of materials from the Permian Basin in New Mexico. These tests were conducted at numerous normal and shear loads up to the expected in situ pre-mining stress conditions. Tests were performed on samples with a halite/clay contact, a halite/anhydrite contact, a halite/polyhalite contact, and on plain salt samples without an interface for comparison. Intact shear strength values were determined for all of the test samples along with residual values for the majority of the tests. The results indicated only a minor variation in shear strength, at a given normal stress, across all samples. This result was surprising because sliding along clay seams is regularly observed in the underground, suggesting the clay seam interfaces should be weaker than plain salt. Post-test inspections of these samples noted that salt crystals were intrinsic to the structure of the seam, which probably increased the shear strength as compared to a typical clay seam.
The Waste Isolation Pilot Plant (WIPP) is an operating geologic repository in southeastern New Mexico for transuranic (TRU) waste from nuclear defense activities. Past nuclear criticality concerns have generally been low at the WIPP due to the low initial concentration of fissile material and the natural tendency of fissile solute to disperse during fluid transport in porous media (Rechard et al. 2000). On the other hand, the list of acceptable WIPP waste types has expanded over the years to include Criticality Control Overpack (CCO) containers and Pipe Overpack (POP) containers. Containers bound for WIPP are bundled together in hexagon shaped 7-packs (six containers surround one container in the center). Two 7-packs are often combined into a TRUPACT-II package for a total of 14 containers. Most TRUPACT-II packages are restricted to a maximum fissile mass equivalent to plutonium (FMEP) between 0.1 and 0.38 kg, but a CCO TRUPACT-II package and a POP TRUPACT-II package are respectively permitted to have 5.32 kg and 2.80 kg FMEP (see Section 3 of US DOE (2013)). Consequently, CCO container criticality after emplacement at the WIPP was evaluated in Saylor and Scaglione (2018), and Oak Ridge National Laboratories is currently at work on POP container criticality analyses.
Abstract not provided.
This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone level-four milestone M4SF-19SNO10303064. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).
Abstract not provided.