Publications

Results 26–50 of 56

Search results

Jump to search filters

Effects of Cation Concentration on Thermophysical Properties of Solar Salts

Kruizenga, Alan M.; Reyes, Karla R.; Leong, Kirsty; Nissen, April E.

An assessment of the effects of cation concentration on the thermophysical properties of salts in the temperature range of 300 to 500°C was investigated. The latent heat and density exhibit a statistically relevant dependence upon mixtures, while heat capacity, viscosity, and thermal conductivity did not exhibit statistical differences among mixtures in the range of temperature studied. Heat capacity tended to be nearly flat while in the liquid state for mixtures at each temperature. Density of the mixtures decreases linearly with temperature. Mixture composition influenced density, with a relative variation up to 2% over the temperature range investigated. Viscosity decreased as a function of temperature in a non-linear fashion and methods used here tended to exhibit a higher value than literature values. Thermal conductivity used laser flash and transient wire methods. Transient wire found no differences between mixtures within repeatability of the measurement, while laser flash was found to not work well for molten nitrate salts due to the large error.

More Details

Identified corrosion and erosion mechanisms in SCO2 Brayton Cycles

Kruizenga, Alan M.; Fleming, Darryn F.

Supercritical Carbon Dioxide (S-CO2) is an efficient and flexible working fluid for power production. Research to interface S-CO2 systems with nuclear, thermal solar, and fossil energy sources is currently underway. To proceed, we must address concerns regarding compatibility of materials, at high temperature, and compatibility between significantly different heat transfer fluids. Dry, pure S-CO2 is thought to be relatively inert [1], while the addition of ppm levels of water and oxygen result in formation of a protective chromia layer and iron oxide [2]. Thin oxides are favorable as diffusion barriers, and for their minimal impact on heat transfer. While S-CO2 is typically understood to be the secondary fluid, many varieties of primary fluids exist for nuclear applications. Molten salts, for use in the Molten Salt Reactor concept, are given as an example to contrast the materials requirements of primary and secondary fluids. Thin chromia layers are soluble in molten salt systems (nitrate, chloride, and fluoride based salts) [3-8], making materials selection for heat exchangers a precarious balancing act between high temperature oxidation (S-CO2) and metal dissolution (salt side of heat exchanger). Because concerns have been raised regarding component lifetimes, S-CO2 work has begun to characterize starting materials and to establish a baseline by analysis of 1) as-received stainless steel piping, and 2) piping exposed to S-CO2 under typical operating conditions with Sandia National Laboratories Brayton systems. A second issue discovered by SNL involves substantial erosion in the turbine blade and inlet nozzle. It is believed that this is caused by small particulates that originate from different materials around the loop that are entrained by the S-CO2 to the nozzle, where they impact the inlet nozzle vanes, causing erosion. We believe that, in some way, this is linked to the purity of the S-CO2, the corrosion contaminants, and the metal particulates that are present in the loop and its components.

More Details

Materials corrosion concerns for supercritical carbon dioxide heat exchangers

Proceedings of the ASME Turbo Expo

Kruizenga, Alan M.; Fleming, Darryn F.

Supercritical Carbon Dioxide (S-CO2) is an efficient and flexible working fluid for power production. Research to interface S-CO2 systems with nuclear, thermal solar, and fossil energy sources are currently underway. To proceed, we must address concerns regarding high temperature compatibility of materials and compatibility between significantly different heat transfer fluids. Dry, pure S-CO2 is thought to be relatively inert [1], while ppm levels of water and oxygen result in formation of a protective chromia layer and iron oxide [2] Thin oxides are favorable as diffusion barriers, and for their minimal impact on heat transfer. Chromia, however, is soluble in molten salt systems (nitrate, chloride, and fluoride based salts) [3-8]. Fluoride anion based systems required the development of the alloy INOR-8 (Hastelloy N, base nickel, 17%Mo) [9] to ensure that chromium diffusion is minimized, thereby maximizing the life of containment vessels. This paper reviews the thermodynamic and kinetic considerations for promising, industrially available materials for both salt and S-CO2 systems.

More Details

Thermal characterization and model free kinetics of aged epoxies and foams using TGA and DSC methods

Kruizenga, Alan M.; Nissen, April E.

Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition. From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.

More Details

Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing

Kruizenga, Alan M.; Crocker, Robert W.

High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600ÀC. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

More Details
Results 26–50 of 56
Results 26–50 of 56