Hole spin qubits confined to lithographically - defined lateral quantum dots in Ge/SiGe heterostructures show great promise. On reason for this is the intrinsic spin - orbit coupling that allows all - electric control of the qubit. That same feature can be exploited as a coupling mechanism to coherently link spin qubits to a photon field in a superconducting resonator, which could, in principle, be used as a quantum bus to distribute quantum information. The work reported here advances the knowledge and technology required for such a demonstration. We discuss the device fabrication and characterization of different quantum dot designs and the demonstration of single hole occupation in multiple devices. Superconductor resonators fabricated using an outside vendor were found to have adequate performance and a path toward flip-chip integration with quantum devices is discussed. The results of an optical study exploring aspects of using implanted Ga as quantum memory in a Ge system are presented.
U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.
Swiler, Laura P.; Becker, Dirk-Alexander; Brooks, Dusty M.; Govaerts, Joan; Koskinen, Lasse; Plischke, Elmar; Rohlig, Klaus-Jurgen; Saveleva, Elena; Spiessl, Sabine M.; Stein, Emily S.; Svitelman, Valentina
Over the past four years, an informal working group has developed to investigate existing sensitivity analysis methods, examine new methods, and identify best practices. The focus is on the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have developed multiple case studies. Four of these case studies are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the different sensitivity analysis methods investigated by various groups, the results obtained by different groups and different implementations, and summarize our findings.
This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.
The typical topology optimization workflow uses a design domain that does not change during the optimization process. Consequently, features of the design domain, such as the location of loads and constraints, must be determined in advance and are not optimizable. A method is proposed herein that allows the design domain to be optimized along with the topology. This approach uses topology and shape derivatives to guide nested optimizers to the optimal topology and design domain. The details of the method are discussed, and examples are provided that demonstrate the utility of this approach.
Ship tracks are quasi-linear cloud patterns produced from the interaction of ship emissions with low boundary layer clouds. They are visible throughout the diurnal cycle in satellite images from space-borne assets like the Advanced Baseline Imagers (ABI) aboard the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES-R). However, complex atmospheric dynamics often make it difficult to identify and characterize the formation and evolution of tracks. Ship tracks have the potential to increase a cloud's albedo and reduce the impact of global warming. Thus, it is important to study these patterns to better understand the complex atmospheric interactions between aerosols and clouds to improve our climate models, and examine the efficacy of climate interventions, such as marine cloud brightening. Over the course of this 3-year project, we have developed novel data-driven techniques that advance our ability to assess the effects of ship emissions on marine environments and the risks of future marine cloud brightening efforts. The three main innovative technical contributions we will document here are a method to track aerosol injections using optical flow, a stochastic simulation model for track formations and an automated detection algorithm for efficient identification of ship tracks in large datasets.
Constructing accurate statistical models of critical system responses typically requires an enormous amount of data from physical experiments or numerical simulations. Unfortunately, data generation is often expensive and time consuming. To streamline the data generation process, optimal experimental design determines the 'best' allocation of experiments with respect to a criterion that measures the ability to estimate some important aspect of an assumed statistical model. While optimal design has a vast literature, few researchers have developed design paradigms targeting tail statistics, such as quantiles. In this project, we tailored and extended traditional design paradigms to target distribution tails. Our approach included (i) the development of new optimality criteria to shape the distribution of prediction variances, (ii) the development of novel risk-adapted surrogate models that provably overestimate certain statistics including the probability of exceeding a threshold, and (iii) the asymptotic analysis of regression approaches that target tail statistics such as superquantile regression. To accompany our theoretical contributions, we released implementations of our methods for surrogate modeling and design of experiments in two complementary open source software packages, the ROL/OED Toolkit and PyApprox.
We use a nascent data-driven causal discovery method to find and compare causal relationships in observed data and climate model output. We consider ten different features in the Arctic climate collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. In identifying and analyzing the resulting causal networks, we make meaningful comparisons between observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI causal discovery algorithm to Arctic climate data, that there are noticeable similarities between observed and simulated Arctic climate dynamics, and that further work is needed to identify specific areas for improvement to better align models with natural observations.