Bridging the gap: from algorithm development to mission impact a partitioned elastodynamics example
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used in an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We present the development of a parallel Markov Chain Monte Carlo (MCMC) method called SAChES, Scalable Adaptive Chain-Ensemble Sampling. This capability is targed to Bayesian calibration of com- putationally expensive simulation models. SAChES involves a hybrid of two methods: Differential Evo- lution Monte Carlo followed by Adaptive Metropolis. Both methods involve parallel chains. Differential evolution allows one to explore high-dimensional parameter spaces using loosely coupled (i.e., largely asynchronous) chains. Loose coupling allows the use of large chain ensembles, with far more chains than the number of parameters to explore. This reduces per-chain sampling burden, enables high-dimensional inversions and the use of computationally expensive forward models. The large number of chains can also ameliorate the impact of silent-errors, which may affect only a few chains. The chain ensemble can also be sampled to provide an initial condition when an aberrant chain is re-spawned. Adaptive Metropolis takes the best points from the differential evolution and efficiently hones in on the poste- rior density. The multitude of chains in SAChES is leveraged to (1) enable efficient exploration of the parameter space; and (2) ensure robustness to silent errors which may be unavoidable in extreme-scale computational platforms of the future. This report outlines SAChES, describes four papers that are the result of the project, and discusses some additional results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and outages to customers. Increasing resilience to these types of hazards is essential to improving water security. As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The National Infrastructure Advisory Council defined infrastructure resilience as “the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event”. Being able to predict how drinking water systems will perform during disruptive incidents and understanding how to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.