Publications

Results 76576–76600 of 99,299

Search results

Jump to search filters

AWS breaks new ground with soldering specification

Welding Journal (Miami, Fla)

Vianco, Paul T.

The American Welding Society (AWS) standards and specifications plays an important role in qualification of solders and soldering procedures. AWS first approved document in 2008 addresses specifically soldering technology. That document is titled AWS B2.3/B2.3M:2008, Specification for Soldering Procedure and Performance Qualification. This specification provides the requirements for qualification of soldering procedure specifications, solderers, and soldering operators for manual, mechanized, and automatic soldering. AWS B2.3 also lists inorganic acid fluxes according to the applicable base material. The document consists two sections titled, 'Soldering Procedure Qualification' and 'Soldering Performance Qualification.' The first section establishes the specimen geometry, fabrication procedures, and solder joint test and evaluation data. The second title addresses the ability of a solderer, a person who performs the manual soldering process, or the soldering operator.

More Details

CHARICE version 1.1 update

Davis, Jean-Paul

CHARICE (CHARacteristics-based inverse analysis of Isentropic Compression Experiments) is a computer application, previously documented in SAND2007-4948, that analyzes velocity waveform data from ramp-wave experiments to determine a material's quasi-isentropic loading response in stress and density using an iterative characteristics-based approach. This short report documents only the changes in CHARICE release version 1.1 relative to release version 1.0, and is not intended to stand alone. CHARICE version 1.1 corrects an error in the algorithm of the method, fixes several bugs, improves robustness and performance, provides more useful error descriptions, and adds a number of minor features.

More Details

Distributed micro-releases of bioterror pathogens : threat characterizations and epidemiology from uncertain patient observables

Adams, Brian M.; Devine, Karen; Najm, Habib N.; Marzouk, Youssef M.

Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern since the anthrax attacks of 2001. The ability to characterize the parameters of such attacks, i.e., to estimate the number of people infected, the time of infection, the average dose received, and the rate of disease spread in contemporary American society (for contagious diseases), is important when planning a medical response. For non-contagious diseases, we address the characterization problem by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To keep the approach relevant for response planning, we limit ourselves to 3.5 days of data. In computational tests performed for anthrax, we usually find these observation windows sufficient, especially if the outbreak model employed in the inverse problem is accurate. For contagious diseases, we formulated a Bayesian inversion technique to infer both pathogenic transmissibility and the social network from outbreak observations, ensuring that the two determinants of spreading are identified separately. We tested this technique on data collected from a 1967 smallpox epidemic in Abakaliki, Nigeria. We inferred, probabilistically, different transmissibilities in the structured Abakaliki population, the social network, and the chain of transmission. Finally, we developed an individual-based epidemic model to realistically simulate the spread of a rare (or eradicated) disease in a modern society. This model incorporates the mixing patterns observed in an (American) urban setting and accepts, as model input, pathogenic transmissibilities estimated from historical outbreaks that may have occurred in socio-economic environments with little resemblance to contemporary society. Techniques were also developed to simulate disease spread on static and sampled network reductions of the dynamic social networks originally in the individual-based model, yielding faster, though approximate, network-based epidemic models. These reduced-order models are useful in scenario analysis for medical response planning, as well as in computationally intensive inverse problems.

More Details

Microfabricated wire arrays for Z-pinch

Cich, Michael J.; Klem, John F.; Spahn, Olga B.; Peake, Gregory M.; Rowen, Adam M.; Nash, Thomas J.

Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

More Details

Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection

Branch, Darren W.; Edwards, Thayne L.; Huber, Dale L.; Brozik, Susan M.

The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

More Details

Post-processing V&V Level II ASC Milestone (2843) results

Moreland, Kenneth D.; Wilke, Jason; Attaway, Stephen W.; Karelitz, David B.

The 9/30/2008 ASC Level 2 Post-Processing V&V Milestone (Milestone 2843) contains functionality required by the user community for certain verification and validation tasks. These capabilities include fragment detection from CTH simulation data, fragment characterization and analysis, and fragment sorting and display operations. The capabilities were tested extensively both on sample and actual simulations. In addition, a number of stretch criteria were met including a comparison between simulated and test data, and the ability to output each fragment as an individual geometric file.

More Details

Peer review of the National Transportation Safety Board structural analysis of the I-35W bridge collapse

Gwinn, Kenneth W.; Wellman, Gerald W.; Redmond, James M.

The Engineering Sciences Center at Sandia National Laboratories provided an independent peer review of the structural analysis supporting the National Transportation Safety Board investigation of the August 1, 2007 collapse of the I-35W Bridge in Minneapolis. The purpose of the review was to provide an impartial critique of the analysis approach, assumptions, solution techniques, and conclusions. Subsequent to reviewing numerous supporting documents, a SNL team of staff and management visited NTSB to participate in analysis briefings, discussions with investigators, and examination of critical elements of the bridge wreckage. This report summarizes the opinion of the review team that the NTSB analysis effort was appropriate and provides compelling supporting evidence for the NTSB probable cause conclusion.

More Details

Data validation and security for reprocessing

Cipiti, Benjamin B.; Duran, Felicia A.; Merkle, Peter B.; Tolk, Keith M.

Next generation nuclear fuel cycle facilities will face strict requirements on security and safeguards of nuclear material. These requirements can result in expensive facilities. The purpose of this project was to investigate how to incorporate safeguards and security into one plant monitoring system early in the design process to take better advantage of all plant process data, to improve confidence in the operation of the plant, and to optimize costs. An existing reprocessing plant materials accountancy model was examined for use in evaluating integration of safeguards (both domestic and international) and security. International safeguards require independent, secure, and authenticated measurements for materials accountability--it may be best to design stand-alone systems in addition to domestic safeguards instrumentation to minimize impact on operations. In some cases, joint-use equipment may be appropriate. Existing domestic materials accountancy instrumentation can be used in conjunction with other monitoring equipment for plant security as well as through the use of material assurance indicators, a new metric for material control that is under development. Future efforts will take the results of this work to demonstrate integration on the reprocessing plant model.

More Details

Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001)

Proposed for publication in Surface Science.

Bartelt, Norman C.; Thurmer, Konrad; Thayer, Gayle E.

We have studied the dislocation structures that occur in films of Ag, Au, and Ag{sub 0.5}Au{sub 0.5} alloy on a Ru(0001) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as 'trigons.' In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moire structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.

More Details
Results 76576–76600 of 99,299
Results 76576–76600 of 99,299