Publications

Results 5976–6000 of 99,299

Search results

Jump to search filters

Modifications to Sandia's MDT and WNTR tools for ERMA

Eddy, John P.; Klise, Katherine A.; Hart, David

ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.

More Details

Nuclear Power Plant Physical Protection Recommendation Document

Evans, Alan S.

This document is aimed at providing guidance to the National Nuclear Security Administration’s (NNSA) Office of International Nuclear Security’s (INS) country and regional teams for implementing effective physical protection systems (PPSs) for nuclear power plants (NPPs) to prevent the radiological consequences of sabotage. This recommendation document includes input from the Physical Protection Functional Team (PPFT), the Response Functional Team (RFT), and the Sabotage Functional Team (SFT) under INS. Specifically, this document provides insights into increasing and sustaining physical protection capabilities at INS partner countries’ NPP sites. Nuclear power plants should consider that the intent of this document is to provide a historical context as well as technologies and methodologies that may be applied to improve physical protection capabilities. It also refers to relevant guidance from the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC).

More Details

Optimization of stochastic feature properties in laser powder bed fusion

Additive Manufacturing

Jensen, Scott C.; Koepke, Joshua R.; Saiz, David J.; Heiden, Michael J.; Carroll, J.D.; Boyce, Brad L.; Jared, Bradley H.

Process parameter selection in laser powder bed fusion (LPBF) controls the as-printed dimensional tolerances, pore formation, surface quality and microstructure of printed metallic structures. Measuring the stochastic mechanical performance for a wide range of process parameters is cumbersome both in time and cost. In this study, we overcome these hurdles by using high-throughput tensile (HTT) testing of over 250 dogbone samples to examine process-driven performance of strut-like small features, ~1 mm2 in austenitic stainless steel (316 L). The output mechanical properties, porosity, surface roughness and dimensional accuracy were mapped across the printable range of laser powers and scan speeds using a continuous wave laser LPBF machine. Tradeoffs between ductility and strength are shown across the process space and their implications are discussed. While volumetric energy density deposited onto a substrate to create a melt-pool can be a useful metric for determining bulk properties, it was not found to directly correlate with output small feature performance.

More Details

Calculation of Dangerous Values for Radionuclides Considered by the IAEA Code of Conduct

Padilla, Isaiah; Olivas, Micaela; Rane, Shraddha; Potter, Charles G.A.

The D-value or dangerous quantity system was designed by the International Commission for Radiological Protection for the determination of source protection categories that can be used to reduce the likelihood of accidents, the consequences of which could result in harm to individuals or costly or expensive cleanup. The process includes multiple scenarios for exposure and two different approaches to the evaluation of detriment. This document provides an example calculation using 137Cs to walk through the complex process of determining its D-value in the hopes of making the process easily understandable.

More Details

ReNCAT: The Resilient Node Cluster Analysis Tool

Wachtel, Amanda; Melander, Darryl; Hart, Olga

ReNCAT is a software application that suggests microgrid portfolios that reduce the impact of large-scale disruptions to power, as measured by the Social Burden Metric. ReNCAT examines a power distribution network to identify regions that can be isolated into microgrids that enable critical services to be provided even if the remainder of the study area is left without power. ReNCAT operates on a simplified representation of the power grid, one that aggregates and approximates loads and conductors. Microgrids are formed within the power network by setting switch states to split or join portions of the grid. ReNCAT identifies candidate microgrid portfolios with varying tradeoffs between cost and service availability.

More Details
Results 5976–6000 of 99,299
Results 5976–6000 of 99,299