Long-duration energy storage (LDES) is critical to a stable, resilient, and decarbonized electric grid. While batteries are emerging as important LDES devices, extended, high-power discharges necessary for cost-competitive LDES present new materials challenges. Focusing on a new generation of low-temperature molten sodium batteries, we explore here unique phenomena related to long-duration discharge through a well-known solid electrolyte, NaSICON. Specifically, molten sodium symmetric cells at 110 °C were cycled at 0.1 A cm−2 for 1-23 h discharges. Longer discharges led to unstable overpotentials, reduced resistances, and decreased electrolyte strength, caused by massive sodium penetration not observed in shorter duration discharges. Scanning electron microscopy informed mechanisms of sodium penetration and even “healing” during shorter-duration cycling. Importantly, these findings show that traditional, low-capacity, shorter-duration tests may not sufficiently inform fundamental materials phenomena that will impact LDES battery performance. This case highlights the importance that candidate LDES batteries be tested under pertinent long-duration conditions.
The properties of defects in n-p-n Si bipolar junction transistors (BJTs) caused by 17-MeV Si ions are investigated via current-voltage, low-frequency (LF) noise, and deep level transient spectroscopy (DLTS) measurements. Four prominent radiation-induced defects in the base-collector junction of these transistors are identified via DLTS. At least two defect levels are observed in temperature-dependent LF 1/f noise measurements, one that is similar to a prominent defect in DLTS and another that is not. Defect microstructures are discussed. Our results show that DLTS and 1/f noise measurements can provide complementary information about defects in linear bipolar devices.
Johnson, Dylan M.; Khakhum, Nittaya; Wang, Min; Warner, Nikole L.; Jokinen, Jenny D.; Comer, Jason E.; Lukashevich, Igor S.
Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification. LCMV-ARM induces robust NF-κB and interferon response factor (IRF) activation while LCMV-WE seems to avoid early innate sensing and failed to induce strong NF-κB and IRF responses in dual-reporter monocyte and epithelial cells. Toll-like receptor 2 (TLR-2) signaling appears to play a critical role in NF-κB activation and the silencing of TLR-2 shuts down IL-6 production in ARM but not in WE-infected cells. Pathogenic LCMV-WE infection is poorly recognized in early endosomes and failed to induce TLR-2/Mal-dependent pro-inflammatory cytokines. Following infection, Interleukin-1 receptor-associated kinase 1 (IRAK-1) expression is diminished in LCMV-ARM- but not LCMV-WE-infected cells, which indicates it is likely involved in the LCMV-ARM NF-κB activation. By confocal microscopy, ARM and WE strains have similar intracellular trafficking although LCMV-ARM infection appears to coincide with greater co-localization of early endosome marker EEA1 with TLR-2. Both strains co-localize with Rab-7, a late endosome marker, but the interaction with LCMV-WE seems to be more prolonged. These findings suggest that LCMV-ARM’s intracellular trafficking pathway may facilitate interaction with innate immune sensors, which promotes the induction of effective innate and adaptive immune responses.
Sandia National Laboratories (SNL) requested a measure of possible human error for each state verification method for a safety mechanism performed at partnering production agencies. A team of three human factors individuals were tasked with conducting observations during site visits of both production agencies in order to complete a Human Reliability Analysis (HRA). A HRA will be used because it provides both qualitative and quantitative reports of human error. This report is the first phase of that effort, which will describe the methods which occur at one of the production agencies.
ORIGEN is one of the main transmutation software packages used in nuclear engineering Modeling Tungsten Boride Neutronics in ORIGEN for Z-Facilityproblems. For the case of this study, tungsten borides are studied using a coupled framework between MCNP and the ORIGEN package of scale. The input used four compositions of tungsten boride: WB with natural boron- 10 abundance, WB with 80wt% B-10 per isotope of boron, WB4 with natural boron-10 abundance, and WB4 with 80wt% B-10 per isotope of boron. Isotopic inventories were produced for WB which show the time dependent change up to 2 years after a 6-Month irradiation. This will allow for further studies of the materials to assess things material composition changes, dose contribution, and waste management requirements.