We demonstrate that the insertion of low-temperature (LT) AlGaN interlayers is effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks during growth of AlGaN directly upon GaN epilayers., Stress evolution and relaxation is monitored using an in-situ optical stress sensor. The combination of in-situ and ex-situ. characterization techniques enables us to determine the degree of pseudomorphism in the interlayers. It is observed that the elastic tensile mismatch between AlGaN and GaN is mediated by the relaxation of interlayers; the use of interlayers offers tunability in the in-plane lattice parameters.
The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere.
Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.
The US Department of Energy (DOE) created the Nuclear Energy Research Initiative (NERI) in 1999 to conduct research and development with the objectives of: (1) overcoming the principal technical obstacles to expanded nuclear energy use, (2) advancing the state of nuclear technology to maintain its competitive position in domestic and world markets, and (3) improving the performance, efficiency, reliability, and economics of nuclear energy. The NERI program is now beginning its second year with increased funding and an emphasis on international participation. Among the programs selected for funding was the ``Smart Equipment and Systems to Improve Reliability and Safety in Future Nuclear Power Plant Operations''. This program is a 36 month collaborative effort bringing together the technical capabilities of Westinghouse Nuclear Automation, Sandia National Laboratories, Duke Engineering and Services (DE and S), Massachusetts Institute of Technology (MIT) and Pennsylvania State University (PSU). The goal of the program is to design, develop, and evaluate an integrated set of tools and methodologies that can improve the reliability and safety of advanced nuclear power plants through the introduction of smart equipment and predictive maintenance technology. The results have implications for reduced construction costs. This paper discusses: (1) the goals and significance of the program, (2) the significant achievements of the program's first year and the current direction for its continuing efforts and (3) potential cooperation with the domestic nuclear and component manufacturing industries, and with international organizations.
Ab initio kink-formation energies are about 0.25 and 0.18 eV on the (100)- and (111)-microfacet steps of Pt(111), while the sum of the step-formation energies is approximately 0.75 eV/atom. These results imply a specific ratio of formation energies for the two step types, namely 1.14, in excellent agreement with experiment. If kink-formation costs the same energy on the two step types, an inference recently drawn from scanning probe observations of step wandering, this ratio ought to be unity.
Recent studies have observed compaction zones pass through porous rock under axisymmetric compression. An initially thin, compacted layer appears at the yield point of the stress-strain curve and then grows by thickening in the direction of maximum compression at constant stress. Strain localization theory has been applied to compaction to explain the formation of these features. This paper describes the growth of the compaction zones, that is, the propagation of their boundaries, in terms of shock wave analysis. The ratio of the applied shortening rate to the velocity of the boundary is related to the porosity change across the boundary. Certain features of the stress-strain curve are explained by the model.
In May 1998, the US Environmental Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with all of the applicable regulations governing the permanent disposal of spent nuclear fuel, high-level waste, and transuranic radioactive waste. The WIPP, a transuranic waste repository, is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal regulations and be certified to receive wastes. Many lessons were learned throughout the 25-year history of the WIPP--from site selection to the ultimate successful certification. The experiences and lessons learned from the WIPP may be of general interest to other repository programs in the world. The lessons learned include all facets of a repository program: programmatic, managerial, regulatory, technical, and social. This paper addresses critical issues that arose during the 25 years of WIPP history and how they influenced the program.
The performance capabilities of pnp InGaAsN-based heterojunction bipolar transistors (HBTs) for use in complementary HBT technology have been theoretically addressed with a two-dimensional simulation program based on the drift-diffusion model. Simulation results closely reproduce the DC characteristics experimentally observed from the first demonstrated pnp AlGaAs/InGaAsN HBT with a current gain of 18 and a turn-on voltage around 0.89 V. Numerous design approaches have been explored to maximize the transistor performances. As a result, a substantial improvement of the DC current gain (by a factor of 2-3) and high-frequency operation performances (with fT and fMAX values up to 10 GHz) can be easily achieved with the proper use of varying base thickness XB and dopant-graded base. The effect of the quaternary band-gap value EG is also addressed. Simulation results show that pnp device with turn-on voltage approximately 0.7 V can be produced by lowering EG to 1.0 eV, without any important degradation of DC and RF properties, because hole transport at the emitter/base side is not strongly affected. The replacement of the InGaAsN collector by GaAs is finally reported. Comparable DC and improved RF simulated performances are observed from this double HBT structure that takes advantages of the negligible valence band offset at the base/collector interface. These encouraging performances demonstrate the practicability of using InGaAsN-based HBTs for complementary low-power applications.
In this paper we introduce by means of examples a new technique for formulating compact (i.e. polynomial-size) LP relaxations in place of exponential-size models requiring separation algorithms. In the same vein as a celebrated theorem by Groetschel, Lovasz and Schrijver, we state the equivalence of compact separation and compact optimization. Among the examples used to illustrate our technique, we introduce a new formulation for the Traveling Salesman Problem, whose relaxation we show equivalent to the subtour elimination relaxation.
Federally funded research and development centers (FFRDCS) area unique class of research and development (R and D) facilities that share aspects of private and public ownership. Some FFRDCS have been praised as national treasures, but FFRDCS have also been the focus of much criticism through the years. This paper traces the history of FFRDCS through four periods: (1) the World War II era, which saw the birth of federal R and D centers that would eventually become FFRDCS; (2) the early Cold War period, which exhibited a proliferation of FFRDCS despite their unclear legislative status and growing tension with an increasingly capable and assertive defense industry, (3) there-evaluation and retrenchment of FFRDCS in the 1960s and early 1970s, which resulted in a dramatic decline in the number of FFRDCS; and (4) the definition and codification of the FFRDC entity in the late 1970s and 1980s, when Congress and the executive branch worked together to formalize regulations to control FFRDCS. The paper concludes with observations on the status of FFRDCS at the end of the twentieth century.
The force exerted on the rotor by an active magnetic bearing (AMB) is determined by the current flow in the magnet coils. This force can be controlled very precisely, making magnetic bearings a potential benefit for grinding, where cutting forces act as external disturbances on the shaft, resulting in degraded part finish. It is possible to achieve precise shaft positioning, reduce vibration of the shaft caused by external disturbances, and even damp out resonant modes. Adaptive control is an appealing approach for these systems because the controller can tune itself to account for an unknown periodic disturbance, such as cutting or grinding forces, injected into the system. In this paper the authors show how one adaptive control algorithm can be applied to an AMB system with a periodic disturbance applied to the rotor. An adaptive algorithm was developed and implemented in both simulation and hardware, yielding significant reductions in rotor displacement in the presence of an external excitation. Ultimately, this type of algorithm could be applied to a magnetic bearing grinder to reduce unwanted motion of the spindle which leads to poor part finish and chatter.
In this paper the authors present the current status of an unsteady 3D parachute simulation code which is being developed at Sandia National Laboratories under the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). The Vortex Inflation PARachute code (VIPAR) which embodies this effort will eventually be able to perform complete numerical simulations of ribbon parachute deployment, inflation, and steady descent. At the present time they have a working serial version of the uncoupled fluids code which can simulate unsteady 3D incompressible flows around bluff bodies made up of triangular membrane elements. A parallel version of the code has just been completed which will allow one to compute flows over complex geometries utilizing several thousand processors on one of the new DOE teraFLOP computers.
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model.
The authors discuss their new implementation of the Adaptive Coordinate Real-space Electronic Structure (ACRES) method for studying the atomic and electronic structure of infinite periodic as well as finite systems, based on density functional theory. This improved version aims at making the method widely applicable and efficient, using high performance Fortran on parallel architectures. The scaling of various parts of an ACRES calculation is analyzed and compared to that of plane-wave based methods. The new developments that lead to enhanced performance, and their parallel implementation, are presented in detail. They illustrate the application of ACRES to the study of elemental crystalline solids, molecules and complex crystalline materials, such as blue bronze and zeolites.
As more complex and functionally diverse requirements are placed on high consequence embedded applications, ensuring safe and secure operation requires an execution environment that is ultra reliable from a system viewpoint. In many cases the safety and security of the system depends upon the reliable cooperation between the hardware and the software to meet real-time system throughput requirements. The selection of a microprocessor and its associated development environment for an embedded application has the most far-reaching effects on the development and production of the system than any other element in the design. The effects of this choice ripple through the remainder of the hardware design and profoundly affect the entire software development process. While state-of-the-art software engineering principles indicate that an object oriented (OO) methodology provides a superior development environment, traditional programming languages available for microprocessors targeted for deeply embedded applications do not directly support OO techniques. Furthermore, the microprocessors themselves do not typically support nor do they enforce an OO environment. This paper describes a system level approach for the design of a microprocessor intended for use in deeply embedded high consequence applications that both supports and enforces an OO execution environment.
The mission of the Architectural Surety{trademark} program at Sandia National Laboratories is to assure the performance of buildings, facilities, and other infrastructure systems under normal, abnormal, and malevolent threat conditions. Through educational outreach efforts in the classroom, at conferences, and presentations such as this one, public and professional awareness of the need to defuse and mitigate such threats is increased. Buildings, airports, utilities, and other kinds of infrastructure deteriorate over time, as evidenced most dramatically by the crumbling cities and aging buildings, bridges, and other facility systems. Natural disasters such as tornadoes, earthquakes, hurricanes, and flooding also stress the materials and structural elements of the built environment. In addition, criminals, vandals, and terrorists attack federal buildings, dams, bridges, tunnels, and other public and private facilities. Engineers and architects are beginning to systematically consider these threats during the design, construction, and retrofit phases of buildings and infrastructures and are recommending advanced research in new materials and techniques. Existing building codes and standards do not adequately address nor protect the infrastructure or the public from many of these emerging threats. The activities in Sandia National Laboratories' Architectural Surety{trademark} efforts take a risk management approach to enhancing the safety, security, and reliability of the constructed environment. The technologies and techniques developed during Sandia's 50 years as the nation's lead laboratory for nuclear weapons surety are now being applied to assessing and reducing the vulnerability of dams, to enhancing the safety and security of staff in foreign embassies, and assuring the reliability of other federal facilities. High consequence surety engineering and design brings together technological advancements, new material requirements, systems integration, and risk management to improve the safety, security, and reliability of the as-built environment. The thrust of this paper is the role that new materials can play in protecting the infrastructure. Retrofits of existing buildings, innovative approaches to the design and construction of new facilities, and the mitigation of consequences in the event of an unpreventable disaster are some of the areas that new construction materials can benefit the Architectural Surety{trademark} of the constructed environment.
Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learned including both things that went well and things that should/could have been done differently.
Many Sandia components for military applications are designed for a 20-year life. In order to determine if magnetic components meet that requirement, the parts are subjected to selected destructive tests. This paper reviews the re-design of a power transformer and the tests required to prove-in the re-design. The re-design included replacing the Epon 828/Mica/methylenedianiline (curing agent Z) epoxy encapsulant with a recent Sandia National Laboratory (SNL) developed epoxy encapsulant. The new encapsulant reduces the Environmental Safety and Health (ES and H) hazards. Life testing of this re-designed transformer generated failures; an open secondary winding. An experimental program to determine the cause of the broken wires and an improved design to eliminate the problem was executed. This design weakness was corrected by reverting to the hazardous epoxy system.
Thirteen segmented aluminum honeycomb samples (5 in. diameter and 1.5 in. height) have been crushed in an experimental configuration that uses a drop table impact machine. The 38.0 pcf bulk density samples are a unique segmented geometry that allows the samples to be crushed while maintaining a constant cross-sectional area. A crush weight of 175 lb was used to determine the rate sensitivity of the honeycomb's highest strength orientation, T-direction, in a dynamic environment of {approx}50 fps impact velocity. Experiments were conducted for two honeycomb manufacturers and at two temperatures, ambient and +165 F. Independent measurements of the crush force were made with a custom load cell and a force derived from acceleration measurements on the drop table using the Sum of Weighted Accelerations Technique with a Calibrated Force (SWAT-CAL). Normalized stress-strain curves for all thirteen experiments are included and have excellent repeatability. These data are strictly valid for material characteristics in the T orientation because the cross-sectional area of the honeycomb did not change during the crush. The dynamic crush data have a consistent increase in crush strength of {approximately}7--19% as compared to quasi-static data and suggest that dynamic performance may be inferred from static tests. An uncertainty analysis estimates the error in these data is {+-} 11%.
There has been considerable progress in recent years towards developing a stress intensity factor-based method for predicting crack initiation at a sharp, bimaterial comer. There is now a comprehensive understanding of the nature of multi-material, two-dimensional, linear-elastic, wedge-tip stress fields. In general, the asymptotic stress state at the apex of dissimilar bonded elastic wedges (i.e. at an interface comer) can have one or more power-law singularities of differing strength and with exponents that can be real or complex. There are, however; many configurations of practical importance, (e.g. adhesively bonded butt joints, hi-material beams, etc.) where interface-comer stresses are described by one, real-valued power-law singularity. In such cases, one can reasonably hypothesize that failure occurs at a critical value of the stress intensity factor: when K{sub a}=K{sub ac}.This approach is completely analogous to LEFM except that the critical stress intensity factor is associated with a discontinuity other than a crack. To apply the K{sub ac} criterion, one must be able to accurately calculate K{sub a} for arbitrary geometries. There are several well-established methods for calculating K{sub a}. These include matching asymptotic and detailed finite element results, evaluation of a path-independent contour integral, and general finite element methods for calculating K. for complex geometries. A rapidly expanding catalog of K{sub a} calibrations is now available for a number of geometries of practical interest. These calibrations provide convenient formulas that can be used in a failure analysis without recourse to a detailed numerical analysis. The K{sub ac} criterion has been applied with some notable successes. For example, the variation in strength of adhesively bonded butt joints with bond thickness and the dependence of this relationship on adhered stiffness is readily explained. No other one-parameter fracture criterion is able to make this sort of prediction. Nevertheless, the interface-corner fracture toughness approach is just in its initial states of development, and its strengths and limitations must be more clearly defined. There are still numerous issues yet to be resolved, including the development of methods for treating time-dependent response, three-dimensional comers, large-scale yielding, and the development of a criterion that can be applied when the comer stress state is not characterized by a single K{sub a}.
Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.
The Simulation Intranet/Product Database Operator (SI/PDO) project has developed a Web-based distributed object architecture for high performance scientific simulation. A Web-based Java interface guides designers through the design and analysis cycle via solid and analytical modeling, meshing, finite element simulation, and various forms of visualization. The SI/PDO architecture has evolved in steps towards satisfying Sandia's long-term goal of providing an end-to-end set of services for high fidelity full physics simulations in a high-performance, distributed, and distance computing environment. This paper describes the continuing evolution of the architecture to provide high-performance visualization services. Extensions to the SI/PDO architecture allow web access to visualization tools that run on MP systems. This architecture makes these tools more easily accessible by providing web-based interfaces and by shielding the user from the details of these computing environments. The design is a multi-tier architecture, where the Java-based GUI tier runs on a web browser and provides image display and control functions. The computation tier runs on MP machines. The middle tiers provide custom communication with MP machines, remote file selection, remote launching of services, load balancing, and machine selection. The architecture allows middleware of various types (CORBA, COM, RMI, sockets, etc.) to connect the tiers depending upon the situation. Testing of constantly developing visualization tools can be done in an environment where there are only two tiers which both run on desktop machines. This allows fast testing turnaround and does not use compute cycles on high-performance machines. Once the code and interfaces are tested, they are moved to high-performance machines, and new tiers are added to handle the problems of using these machines. Uniform interfaces are used throughout the tiers to allow this flexibility. Experiments test the appropriate level of interface: either a large set of specific function calls or a small set of generic function calls. This architecture is based on the goals and constraints of the environment: huge data volumes (that cannot be easily moved), use of multiple middleware protocols, MP platform portability, rapid development of the visualization tools, distributed resource management (of MP resources), and the use of existing visualization tools.
The characteristics Of ion-induced charge collection and single-event upset are studied in SOI transistors and circuits with various body tie structures. Impact ionization effects including single-event snapback are shown to be very important. Focused ion microbeam experiments are used to find single-event snapback drain voltage thresholds in n-channel SOI transistors as a function of device width. Three-Dimensional device simulations are used to determine single-event upset and snapback thresholds in SOI SRAMS, and to study design tradeoffs for various body-tie structures. A window of vulnerability to single-event snapback is shown to exist below the single-event upset threshold. The presence of single-event snapback in commercial SOI SRAMS is confirmed through broadbeam ion testing, and implications for hardness assurance testing of SOI integrated circuits are discussed.
Metal-oxide-silicon capacitors fabricated in a bi-polar process were examined for densities of oxide trapped charge, interface traps and deactivated substrate acceptors following high-dose-rate irradiation at 100 C. Acceptor neutralization near the Si surface occurs most efficiently for small irradiation biases in depletion. The bias dependence is consistent with compensation and passivation mechanisms involving the drift of H{sup +} ions in the oxide and Si layers and the availability of holes in the Si depletion region. Capacitor data from unbiased irradiations were used to simulate the impact of acceptor neutralization on the current gain of an npn bipolar transistor. Neutralized acceptors near the base surface enhance current gain degradation associated with radiation-induced oxide trapped charge and interface traps by increasing base recombination. The additional recombination results from the convergence of carrier concentrations in the base and increased sensitivity of the base to oxide trapped charge. The enhanced gain degradation is moderated by increased electron injection from the emitter. These results suggest that acceptor neutralization may enhance radiation-induced degradation of linear circuits at elevated temperatures.
Legislative and marketing forces both abroad and in the US are causing the electronics industry to consider the use of Pb-free solders in place of traditional Sn-Pb alloys. Previous case studies have demonstrated the satisfactory manufacturability and reliability of several Pb-free compositions for printed circuit board applications. Those data, together with the results of fundamental studies on Pb-free solder materials, have indicated the general feasibility of their use in the broader range of present-day, electrical and electronic components.
The development of liquid metal heat-pipes for use in solar powered Stirling engines has led to an in-depth analysis of heat-pipe wick properties. To model the flow of liquid sodium through the wick its two-phase permeability measurement is of interest. The permeability will be measured by constructing a test cell made up of a wick sample sintered to a manifold. Measuring the volumetric flow rate through the wick will allow for a determination of the wick's permeability as a function of pressure. Currently, simple estimates of permeability as a function of vapor fraction of a porous media are being used as a model to calculate the two-phase permeability. The above mentioned experiment will be used to test the existing formulas validity. The plan is to make use of a known procedure for testing permeability and apply those techniques to a felt-metal wick. The results will be used to verify and/or modify the two-phase permeability estimates. With the increasing desire to replace directly illuminated engines with the much more efficient heat-pipe apparatus it is inherently clear that the usefulness of known wick properties will make wick permeability design a simpler process.
From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.