Metal-oxide composites are commonly used in high temperature environments for their thermal stability and high melting points. Commonly employed with refractory oxides or carbides such as ZrC and HfC, these materials may be improved with the use of a low density, high melting point ceramic such as CeO2. In this work, the consolidation of W-CeO2 metal matrix composites in the high CeO2 concentration regime is explored. The CeO2 concentrations of 50, 33, and 25 wt.%, the CeO2 particle size from nanometer to micrometer, and various hot isostatic pressing temperatures are investigated. Decreasing the CeO2 concentration is observed to increase the composite density and increase the Vickers hardness. The CeO2 oxidation state is observed to be a combination of Ce3+ and Ce4+, which is hypothesized to contribute to the porosity of the composites. The hardness of the metal-oxide composite can be improved more than 2.5 times compared to pure W processed by the same route. This work offers processing guidelines for further consolation of oxide-doped W composites.
Many important engineering and scientific applications such as cement slurries, foams, crude oil, and granular avalanches involve the concept of yield stress. Therefore, modeling yield stress fluids in different flow configurations, including the accurate prediction of the yield surface, is important. In this paper, we present a computational model based on the finite element method to study the flow of yield stress fluids in a thin mold and compare the results with data from flow visualization experiments. We use the level set method to describe the interface between the filling fluid and air. We use polypropylene glycol as a model Newtonian fluid and Carbopol for the model yield stress fluid, as the Carbopol solution demonstrates yielding without thixotropy. To describe the yielding and shear-thinning behavior, we use a generalized Newtonian constitutive equation with a Bingham–Carreau–Yasuda form. We compare the results obtained from the mold filling experiments with the results from the three-dimensional (3D) model and from a reduced-order Hele-Shaw (HS) model that is two-dimensional, including the effect of shear-thinning along the thin direction only approximately. We show that both the 3D and the HS model can capture the experimental meniscus shape reasonably well for all the fluids considered at three different flow rates. This indicates that the shape evolution is insensitive to the dimensionality of the model. However, the viscosity and yield surfaces predicted by the 3D and HS models are different. The HS model underestimates the high viscosity and unyielded regions compared to the estimation by the 3D model.
In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.
This study investigates the effects of magnetic constraints on a piezoelectric energy harvesting absorber while simultaneously controlling a primary structure and harnessing energy. An accurate forcing representation of the magnetic force is investigated and developed. A reduced-order model is derived using the Euler–Lagrange principle, and the impact of the magnetic force is evaluated on the absorber’s static position and coupled natural frequency of the energy harvesting absorber and the coupled primary absorber system. The results show that attractive magnet configurations cannot improve the system substantially before pull-in occurs. A rigorous eigenvalue problem analysis is performed on the absorber’s substrate thickness and tip mass to effectively design an energy harvesting absorber for multiple initial gap sizes for the repulsive configurations. Then, the effects of the forcing amplitude on the primary structure absorber are studied and characterized by determining an effective design of the system for a simultaneous reduction in the primary structure’s motion and improvement in the harvester’s efficiency.
Numerical integration is a basic step in the implementation of more complex numerical algorithms suitable, for example, to solve ordinary and partial differential equations. The straightforward extension of a one-dimensional integration rule to a multidimensional grid by the tensor product of the spatial directions is deemed to be practically infeasible beyond a relatively small number of dimensions, e.g., three or four. In fact, the computational burden in terms of storage and floating point operations scales exponentially with the number of dimensions. This phenomenon is known as the curse of dimensionality and motivated the development of alternative methods such as the Monte Carlo method. The tensor product approach can be very effective for high-dimensional numerical integration if we can resort to an accurate low-rank tensor-train representation of the integrand function. In this work, we discuss this approach and present numerical evidence showing that it is very competitive with the Monte Carlo method in terms of accuracy and computational costs up to several hundredths of dimensions if the integrand function is regular enough and a sufficiently accurate low-rank approximation is available.
Marine energy generation technologies such as wave and tidal power have great potential in meeting the need for renewable energy in the years ahead. Yet, many challenges remain associated with marine-based systems because of the corrosive environment. Conventional materials like metals are subject to rapid corrosive breakdown, crippling the lifespan of structures in such environments. Fiber-reinforced polymer composites offer an appealing alternative in their strength and corrosion resistance, but can experience degradation of mechanical properties as a result of moisture absorption. An investigation is conducted to test the application of a technique for micromechanical analysis of composites, known as multicontinuum theory and demonstrated in past works, as a mechanism for predicting the effects of prolonged moisture absorption on the performance of fiber-reinforced composites. Experimental tensile tests are performed on composite coupons with and without prolonged exposure to a salt water solution to obtain stiffness and strength properties. Multicontinuum theory is applied in conjunction with micromechanical modeling to deduce the effects of moisture absorption on the behavior of constituent materials within the composites. The results are consistent with experimental observations when guided by known mechanisms and trends from previous studies, indicating multicontinuum theory as a potentially effective tool in predicting the long-term performance of composites in marine environments.
Liu, Renjie; El Berch, John N.; House, Stephen D.; Meil, Samuel W.; Mpourmpakis, Giannis; Porosoff, Marc D.
Reactive separations of CO/CO2 mixtures are a promising pathway to lower the energy requirement of CO2 hydrogenation to chemicals and fuels, with applications in the U.S. Navy’s seawater-to-fuel process. With the CO/CO2 feedstock, a challenge is activating CO to produce heavier hydrocarbons while preventing CO2 methanation, requiring low-temperature Fischer-Tropsch synthesis (FTS) catalysts. In this work, we demonstrate that a Ru–Co single atom alloy (SAA) catalyst produces C5+ hydrocarbons at a rate of 11.7 μmol/s/g-cobalt (hexane basis) in a 50/50 CO/CO2 stream with ≤1% CO2 conversion. The reaction operates at a relatively low temperature (200 °C) and high gas hourly space velocity (GHSV: 84,000 mL/g/h) that is compatible with the upstream reverse water-gas shift reaction. Detailed experiments, catalyst characterizations, and density functional theory (DFT) calculations have been conducted to understand the active phase, the role of the Ru dopant, and catalyst restructuring that occurs at elevated temperatures (>200 °C). Ru dopants are found to promote the reduction of Co species, enabling catalytic activity for CO hydrogenation without pre-reduction, but may not enhance the FTS activity or desired C5+ hydrocarbon selectivity.
This SAND report provides system effectiveness analysis results for notional chemical facilities. Two facilities were analyzed in total, evaluating the effectiveness of the unique security systems in place at each location. Each analysis looked at a range of threat and response capabilities, specific target configurations, and task times to acquire target material in both theft and release scenarios. This report details results for both facilities.
This is an extension of work described by Rodriguez et al. (2021). It continues analyses of a generic transformer design by Wes Greenwood. In this report, we summarize that work and add comparable results using the ANSYS Maxwell software (henceforward, “ANSYS”), and with COMSOL . We found the ANSYS and COMSOL calculations of inductance agreed well with previous results for simplified coils in air, and with a ferromagnetic core. We then describe the ANSYS and COMSOL approach and show results for a full transformer model based on magnetic field analyses. Finally, we present electrostatic analyses of E field enhancement, once again resolving individual wires. The purpose is to assess the electrostatic fields in order to locate where electric breakdown is likely to originate. We found the maximum enhancement between the secondary and either the primary or the tertiary at the end of the windings with a large potential difference.
A fundamental task of radar, beyond merely detecting a target, is to estimate some parameters associated with it. For example, this might include range, direction, velocity, etc. In any case, multiple measurements, often noisy, need to be processed to yield a ‘best estimate’ of the parameter. A common mathematical method for doing so is called “Regression” analysis. The goal is to minimize the expected squared error in the estimate. Even when alternate algorithms are considered, the least squared-error regression analysis is the benchmark against which alternatives are compared.