Publications

Results 176–200 of 347

Search results

Jump to search filters

Ab initio molecular dynamics determination of competitive O2 vs. N2 adsorption at open metal sites of M2 (dobdc)

Physical Chemistry Chemical Physics. PCCP

Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; Sava Gallis, Dorina F.; Nenoff, T.M.

The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

More Details

Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

Nenoff, T.M.; Croes, Kenneth J.; Garino, Terry J.; Mowry, Curtis D.

This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added as further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I2.

More Details

Inelastic Neutron Scattering and Molecular Simulation of the Dynamics of Interlayer Water in Smectite Clay Minerals

Journal of Physical Chemistry C

Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, T.M.

The study of mineral-water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200-900 cm-1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

More Details

Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

Nenoff, T.M.; Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M.; Williams, T.C.; Shaddix, Christopher R.

Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

More Details

SNL Sigma Off-Gas Team Contribution to the FY15 DOE/NE-MRWFD Campaign Accomplishments Report

Nenoff, T.M.

This program at Sandia is focused on Iodine waste form development for Fuel Cycle R&D needs. Our research has a general theme of “Capture and Storage of Iodine Fission Gas “ in which we are focused on silver loaded zeolite waste forms, evaluation of iodine loaded getter materials (eg., mordenite zeolite), and the development of low temperature glass waste forms that successfully incorporate iodine loaded getter materials from I2, organic iodide, etc. containing off-gas streams.

More Details

Complete Initial Scoping Tests on the Incorporation of Novel Loaded Iodine Getters into GCM

Nenoff, T.M.; Garino, Terry J.; Croes, Kenneth J.

This study encompasses initial scoping tests on the incorporation of a novel iodine loaded getter material into the Sandia developed low temperature sintering glass ceramic material (GCM) waste form. In particular, we studied the PNNL Ag-I-Aerogel. Optical microscopy indicates inhomogenous samples based on particle sizes and variations in color (AgI vs Ag/AgO on silica). TGA/MS data when heated in air indicates loss of iodine and organics (CO2) between 250-450°C a total of ~15wt% loss, with additional / small iodine loss when during 550°C hold for 1 hr. TGA/MS data when heated in N2 indicates less organic and slightly less iodine loss below 550°C, with no loss of iodine in 550°C 1 hour hold. Furthermore, a substantial mass loss of sulfur containing compounds is observed (m/e of 34 and 36) between 150 – 550°C in both air and N2 sintering atmospheres. In an effort to capture iodine lost to volatilization during heating (at temps below glass sintering temperature of 550°C), we added 5 wt% Ag flake to the AgIaerogel. Resulting data indicates the iodine is retained with the addition of the Ag flake, resulting in only a small iodine loss (< 1wt%) at ~350°C. No method of curtailing loss of sulfur containing compounds due to heating was successful in this scoping study.

More Details

Crystal Structure and Thermodynamic Stability of Ba/Ti-Substituted Pollucites for Radioactive Cs/Ba Immobilization

Journal of the American Ceramic Society

Nenoff, T.M.; Garino, Terry J.; Xu, Hongwu; Chavez, Manuel E.; Mitchell, Jeremy N.

As an analogue of the mineral pollucite (CsAlSi2O6), CsTiSi2O6.5 is a potential host phase for radioactive Cs. However, as 137Cs and 135Cs transmute to 137Ba and 135Ba, respectively, through the beta decay, it is essential to study the structure and stability of this phase upon Cs → Ba substitution. In this work, two series of Ba/Ti-substituted samples, CsxBa(1-x)/2TiSi2O6.5 and CsxBa1-xTiSi2O7-0.5x, (x = 0.9 and 0.7), were synthesized by higherature crystallization from their respective precursors. Synchrotron X-ray diffraction and Rietveld analysis reveal that while CsxBa(1-x)/2TiSi2O6.5 samples are phase-pure, CsxBa1-xTiSi2O7-0.5x samples contain Cs3x/(2+x)Ba(1-x)/(2+x)TiSi2O6.5 pollucites (i.e., also two-Cs-to-one-Ba substitution) and a secondary phase, fresnoite (Ba2TiSi2O8). Thus, the CsxBa1-xTiSi2O7-0.5x series is energetically less favorable than CsxBa(1-x)/2TiSi2O6.5. To study the stability systematics of CsxBa(1-x)/2TiSi2O6.5 pollucites, higherature calorimetric experiments were performed at 973 K with or without the lead borate solvent. Enthalpies of formation from the constituent oxides (and elements) have thus been derived. The results show that with increasing Ba/(Cs + Ba) ratio, the thermodynamic stability of these phases decreases with respect to their component oxides. Hence, from the energetic viewpoint, continued Cs → Ba transmutation tends to destabilize the parent silicotitanate pollucite structure. However, the Ba-substituted pollucite co-forms with fresnoite (which incorporates the excess Ba), thereby providing viable ceramic waste forms for all the Ba decay products.

More Details

Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ

Nenoff, T.M.; Garino, Terry J.; Croes, Kenneth J.; Rodriguez, Mark A.

Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

More Details

Hydrogen purification: MOF membranes put to the test

Nature Chemistry

Nenoff, T.M.

Membranes are essential components for the removal of greenhouse gases during fuel generation processes, such as hydrogen production, but simultaneous permeability and selectivity is difficult to obtain. This has now been achieved in ultrathin membranes that use the size-selective porosity of metal–organic frameworks to separate CO2 from H2.

More Details
Results 176–200 of 347
Results 176–200 of 347