Publications

Results 51–75 of 86

Search results

Jump to search filters

Effect of an external field on capillary waves in a dipolar fluid

Physical Review E

Koski, Jason P.; Moore, Stan G.; Grest, Gary S.; Siska, Steven M.

The role of an external field on capillary waves at the liquid-vapor interface of a dipolar fluid is investigated using molecular dynamics simulations. For fields parallel to the interface, the interfacial width squared increases linearly with respect to the logarithm of the size of the interface across all field strengths tested. The value of the slope decreases with increasing field strength, indicating that the field dampens the capillary waves. With the inclusion of the parallel field, the surface stiffness increases with increasing field strength faster than the surface tension. For fields perpendicular to the interface, the interfacial width squared is linear with respect to the logarithm of the size of the interface for small field strengths, and the surface stiffness is less than the surface tension. Above a critical field strength that decreases as the size of the interface increases, the interface becomes unstable due to the increased amplitude of the capillary waves.

More Details

ASC ATDM Level 2 Milestone #6015: Asynchronous Many-Task Software Stack Demonstration

Bennett, Janine C.; Bettencourt, Matthew T.; Clay, Robert L.; Edwards, Harold C.; Glass, Micheal W.; Hollman, David S.; Kolla, Hemanth; Lifflander, Jonathan J.; Littlewood, David J.; Markosyan, Aram; Moore, Stan G.; Olivier, Stephen L.; Phipps, Eric T.; Rizzi, Francesco; Slattengren, Nicole L.; Sunderland, Daniel; Wilke, Jeremiah

This report is an outcome of the ASC ATDM Level 2 Milestone 6015: Asynchronous Many-Task Software Stack Demonstration. It comprises a summary and in depth analysis of DARMA and a DARMA-compliant Asynchronous Many-Task (AMT) runtime software stack. Herein performance and productivity of the over- all approach are assessed on benchmarks and proxy applications representative of the Sandia ATDM applications. As part of the effort to assess the perceived strengths and weaknesses of AMT models compared to more traditional methods, experiments were performed on ATS-1 (Advanced Technology Systems) test bed machines and Trinity. In addition to productivity and performance assessments, this report includes findings on the generality of DARMAs backend API as well as findings on interoperability with node- level and network-level system libraries. Together, this information provides a clear understanding of the strengths and limitations of the DARMA approach in the context of Sandias ATDM codes, to guide our future research and development in this area.

More Details

LAMMPS Project Report for the Trinity KNL Open Science Period

Moore, Stan G.; Thompson, A.P.; Wood, Mitchell

LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used in an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.

More Details

Peridynamic Multiscale Finite Element Methods

Costa, Timothy; Bond, Stephen D.; Littlewood, David J.; Moore, Stan G.

The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.

More Details

Aleph Field Solver Challenge Problem Results Summary

Hooper, Russell; Moore, Stan G.

Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched modeling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challenging problems important to Sandia's mission that Aleph was specifically designed to address.

More Details
Results 51–75 of 86
Results 51–75 of 86