Publications

49 Results

Search results

Jump to search filters

Determining the resolution of scanning microwave impedance microscopy using atomic-precision buried donor structures

Applied Surface Science

Scrymgeour, David S.; Baca, Ana B.; Fishgrab, Kira L.; Simonson, Robert J.; Marshall, Michael T.; Bussmann, Ezra B.; Nakakura, Craig Y.; Dyck, Meredith L.; Misra, Shashank M.

To quantify the resolution limits of scanning microwave impedance microscopy (sMIM), we created scanning tunneling microscope (STM)-patterned donor nanostructures in silicon composed of 10 nm lines of highly conductive silicon buried under a protective top cap of silicon, and imaged them with sMIM. This dopant pattern is an ideal test of the resolution and sensitivity of the sMIM technique, as it is made with nm-resolution and offers minimal complications from topography convolution. It has been determined that typical sMIM tips can resolve lines down to ∼80 nm spacing, while resolution is independent of tip geometry as extreme tip wear does not change the resolving power, contrary to traditional scanning capacitance microscopy (SCM). Going forward, sMIM is an ideal technique for qualifying buried patterned devices, potentially allowing for quantitative post-fabrication characterization of donor structures, which may be an important tool for the study of atomic-scale transistors and state of the art quantum computation schemes.

More Details

Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

New Journal of Physics

Bussmann, Ezra B.; Yitamben, Esmeralda; Swartzentruber, Brian S.; Misra, Shashank M.; Simonson, Robert J.; Carroll, Malcolm

Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Ã…-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.

More Details

Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

Sensors and Actuators, B: Chemical

Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew W.; Simonson, Robert J.

Nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600°C. NPDs have previously been reported to be 7 × 104× and 105× more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (μNPD). The μNPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responses of such devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of μNPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pKa values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the μNPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The μNPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.

More Details

Low leak rate MEMS valves for micro-gas-analyzer flow control

TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems

Galambos, Paul; Lantz, J.W.; James, Conrad D.; McClain, Jaime L.; Baker, M.; Anderson, R.; Simonson, Robert J.

We present MEMS polysilicon microvalves for flow control of a rapid analytical microsystem (Micro-Gas-Analyzer, MGA). All valve components (boss, seat, springs, electrodes, and stops) are surface micromachined in the SUMMiT™ microfabrication process. The valves have been characterized at high flow rate when open (60 ml/min air), low leak rate when closed (<0.0025 ml/min Hydrogen, H2), and tunable closing pressures (1 to 35 psig). Active electrostatic valves have been shown to hold closed (voltage on) against a high pressure (>40 psig) for sample loading, open for gas chromatograph (GC) loading (voltage off), and reclose against low pressure 2-5 psig. ©2009 IEEE.

More Details

Viscoelastic coupling of nanoelectromechanical resonators

Simonson, Robert J.; Staton, Alan W.

This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanical devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.

More Details

Microcalibrator system for chemical signature and reagent delivery

Simonson, Robert J.; Rawlinson, Kim S.; Robinson, Alex L.; Ellison, Jennifer A.; Staton, Alan W.; Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Hance, Bradley G.

Networked systems of low-cost, small, integrable chemical sensors will enable monitoring of Nonproliferation and Materials Control targets and chemical weapons threats. Sandia-designed prototype chemical sensor systems are undergoing extended field testing supported by DOE and other government agencies. A required surety component will be verification of microanalytical system performance, which can be achieved by providing a programmable source of chemical signature(s) for autonomous calibration of analytical systems. In addition, such a controlled chemical source could be used to dispense microaliquots of derivatization reagents, extending the analysis capability of chemical sensors to a wider range of targets. We have developed a microfabricated system for controlled release of selected compounds (calibrants) into the analytical stream of microsensor systems. To minimize pumping and valve requirements of microfluidic systems, and to avoid degradation issues associated with storage of dilute solutions, we have utilized thermally labile organic salts as solid-phase reservoir materials. Reproducible deposition of tetrapropyl ammonium hydroxide onto arrays of microfabricated heating elements can provide a pair of calibration marker compounds (one fast and one slow-eluting compound) for GC analyses. The use of this microaliquot gas source array for hydrogen generation is currently under further development. The goal of the latter effort will be to provide a source of high-pressure, low viscosity GC carrier gas for Sandia's next-generation microfabricated gas-phase chemical analysis systems.

More Details

Use of Classical Least Squares/Partial Least Squares (CLS/PLS) hybrid algorithm for calibration and calibration maintenance of Surface Acoustic Wave (SAW) devices

Proposed for publication in Sensors and Actuators B.

Rivera, Dion A.; Rivera, Dion A.; Alam, Mary K.; Yelton, William G.; Staton, Alan W.; Simonson, Robert J.

Many data analysis algorithms that are currently employed in SAW sensors lack the ability to easily maintain calibration models in the presence of unmodeled interferents or sensor drift. The classical least squares/partial least squares (CLS/PLS) hybrid algorithm is tested in this study for its ability to update calibration models for unmodeled interferents and sensor drift with information from only a single recalibration standard. Use of the CLS/PLS hybrid algorithm for calibration and calibration maintenance of surface acoustic wave (SAW) devices was investigated for synthetic mixtures of iso-octane-methanol-water and with synthetic mixtures of nerve agent analogs, di-iso-propyl methyl phosphonate (DIMP)-kerosene-water along with a true ternary mixture of dimethyl methyl phosphonate (DMMP)-kerosene-water. Calibration statistics using the hybrid algorithm were found to be as good as those obtained from a standard partial least squares (PLS) analysis. In prediction, the hybrid algorithm models were found to perform equivalently to PLS models in the absence of unmodeled interferents or sensor drift, with an accuracy of 5-10% of the reference values and a high degree of precision. In the case of prediction in the presence of unmodeled interferents and/or sensor drift, PLS models and prediction augmented CLS/PLS (PACLS/PLS) hybrid models were compared using a single standard sample to update each model for prediction. For the cases studied, PACLS/PLS hybrid models were comparable to or outperformed updated PLS models that used subset recalibration or piece-wise direct standardization.

More Details

Distributed Sensor Particles for Remote Fluorescence Detection of Trace Analytes: UXO/CW

Singh, Anup K.; Schmitt, Randal L.; Johnson, Mark S.; Hargis, Philip J.; Simonson, Robert J.; Simonson, Robert J.; Schoeniger, Joseph S.; Ashley, Carol S.; Brinker, C.J.; Hance, Bradley G.

This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT.

More Details

IMS applications analysis

Rodacy, Philip J.; Reber, Stephen D.; Simonson, Robert J.; Hance, Bradley G.

This report examines the market potential of a miniature, hand-held Ion Mobility Spectrometer. Military and civilian markets are discussed, as well as applications in a variety of diverse fields. The strengths and weaknesses of competing technologies are discussed. An extensive Ion Mobility Spectrometry (IMS) bibliography is included. The conclusions drawn from this study are: (1) There are a number of competing technologies that are capable of detecting explosives, drugs, biological, or chemical agents. The IMS system currently represents the best available compromise regarding sensitivity, specificity, and portability. (2) The military market is not as large as the commercial market, but the military services are more likely to invest R and D funds in the system. (3) Military applications should be addressed before commercial applications are addressed. (4) There is potentially a large commercial market for rugged, hand-held Ion Mobility Spectrometer systems. Commercial users typically do not invest R and D funds in this type of equipment rather, they wait for off-the-shelf availability.

More Details
49 Results
49 Results