Radiation Instability of Thermally Stable Nanocrystalline Pt-Au System
Abstract not provided.
Abstract not provided.
Chemistry of Materials
Vibrational spectroscopy is a nondestructive technique commonly used in chemical and physical analyses to determine atomic structures and associated properties. However, the evaluation and interpretation of spectroscopic profiles based on human-identifiable peaks can be difficult and convoluted. To address this challenge, we present a reliable protocol based on supervised manifold learning techniques meant to connect vibrational spectra to a variety of complex and diverse atomic structure configurations. As an illustration, we examined a large database of virtual vibrational spectroscopy profiles generated from atomistic simulations for silicon structures subjected to different stress, amorphization, and disordering states. We evaluated representative features in those spectra via various linear and nonlinear dimensionality reduction techniques and used the reduced representation of those features with decision trees to correlate them with structural information unavailable through classical human-identifiable peak analysis. We show that our trained model accurately (over 97% accuracy) and robustly (insensitive to noise) disentangles the contribution from the different material states, hence demonstrating a comprehensive decoding of spectroscopic profiles beyond classical (human-identifiable) peak analysis.
Journal of Power Sources
Fracture and short circuit in the Li7La3Zr2O12 (LLZO) solid electrolyte are two key issues that prevent its adoption in battery cells. In this paper, we utilize phase-field simulations that couple electrochemistry and fracture to evaluate the maximum electric potential that LLZO electrolytes can support as a function of crack density. In the case of a single crack, we find that the applied potential at the onset of crack propagation exhibits inverse square root scaling with respect to crack length, analogous to classical fracture mechanics. Here, we further find that the short-circuit potential scales linearly with crack length. In the realistic case where the solid electrolyte contains multiple cracks, we reveal that failure fits the Weibull model. The failure distributions shift to favor failure at lower overpotentials as areal crack density increases. Furthermore, when flawless interfacial buffers are placed between the applied potential and the bulk of the electrolyte, failure is mitigated. When constant currents are applied, current focuses in near-surface flaws, leading to crack propagation and short circuit. We find that buffered samples sustain larger currents without reaching unstable overpotentials and without failing. Our findings suggest several mitigation strategies for improving the ability of LLZO to support larger currents and improve operability.
Materials Research Letters
Through atomistic simulations, we uncover the dynamic properties of the Cantor alloy under shock-loading conditions and characterize its equation-of-state over a wide range of densities and pressures along with spall strength at ultra-high strain rates. Simulation results reveal the role of local phase transformations during the development of the shock wave on the alloy's high spall strength. The simulated shock Hugoniot results are in remarkable agreement with experimental data, validating the predictability of the model. These mechanistic insights along with the quantification of dynamical properties can drive further advancements in various applications of this class of alloys under extreme environments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Nuclear Materials
Radiation-induced segregation is a phenomenon commonly observed in many alloys which consists of the redistribution of elements (solute or interstitial impurities) under irradiation. The onset and development of radiation-induced segregation can only occur when a sufficient flux of defects is sustained and defect sinks are present. Irradiation dose, dose rate, and particle types all affect defect flux. In this work, we employ a phase-field model to examine the effects of dose, dose rate, and type of incident particles on radiation-induced segregation behavior in a model binary alloy. The phase-field model takes into account the formation and evolution of point defects as well as defect clusters, the diffusion and clustering of alloy species, the presence of additional extrinsic defect sinks in the form of dislocations, and two different methods of radiation-damage insertion, which are intended to simulate either light-ion/electron irradiation via Frenkel pairs or heavy-ion irradiation in the form of cascades. Our results show a dose-rate and particle-type dependence on the amount of solute segregation. We show that the material systems exposed to higher dose rates are less subjected to solute segregation at equivalent doses. We also show that such dose-rate-dependence behavior is due to a delay of the incubation dose at which radiation-induced segregation effectively starts. Particle type and the presence of dislocations can accentuate this behavior. Our model predictions correlate with many experimental observations made over the years on radiation-induced segregation providing credence to the simulation results. The methodology presented in this study allows for a first-order prediction of the dose rate at which proxy irradiation experiments could be performed to approximate radiation-induced segregation behaviors seen in targeted irradiation conditions.
Abstract not provided.
Metals
In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon Doppler Velocimetry (PDV) recordings of the velocity profiles find the EOS coefficients using an impedance mismatch technique. Following this set of measurements, laser-driven aluminum flyer plates are accelerated to velocities of 0.5–1.0 km/s using a high-energy pulse laser. Upon impact with CoCrFeMnNi samples, the shock response is found through PDV measurements of the free surface velocities. From this second set of measurements, the spall strength of the alloy is found for pressures up to 5 GPa and strain rates in excess of 106 s−1. Further analysis of the failure mechanisms behind the spallation is conducted using fractography revealing the occurrence of ductile fracture at voids presumed to be caused by chromium oxide deposits created during the manufacturing process.
Abstract not provided.
Abstract not provided.
Physical Review Materials
Embrittling potency is a thermodynamic metric that assesses the influence of solute segregation to a grain boundary (GB) on intergranular fracture. Historically, authors of studies have reported embrittling potency as a single scalar value, assuming a single segregation site of importance at a GB and a particular cleavage plane. However, the topography of intergranular fracture surfaces is not generally known a priori. Accordingly, in this paper, we present a statistical ensemble approach to compute embrittling potency, where many free surface (FS) permutations are systematically considered to model fracture of a GB. The result is a statistical description of the thermodynamics of GB embrittlement. As a specific example, embrittling potency distributions are presented for Cr segregation to sites at two Ni (111) symmetric tilt GBs using atomistic simulations. We show that the average embrittling potency for a particular GB site, considering an ensemble of FS permutations, is not equal to the embrittling potency computed using the lowest energy pair of FSs. A mean GB embrittlement is proposed, considering both the likelihood of formation of a particular FS and the probability of solute occupancy at each GB site, to compare the relative embrittling behavior of two distinct GBs.
Physical Review B
Magnetic, specific heat, and structural properties of the equiatomic Cantor alloy system are reported for temperatures between 5 and 300 K, and up to fields of 70 kOe. Magnetization measurements performed on as-cast, annealed, and cold-worked samples reveal a strong processing history dependence and that high-temperature annealing after cold working does not restore the alloy to a "pristine"state. Measurements on known precipitates show that the two transitions, detected at 43 and 85 K, are intrinsic to the Cantor alloy and not the result of an impurity phase. Experimental and ab initio density functional theory computational results suggest that these transitions are a weak ferrimagnetic transition and a spin-glass-like transition, respectively, and magnetic and specific heat measurements provide evidence of significant Stoner enhancement and electron-electron interactions within the material.
Computer Methods in Applied Mechanics and Engineering
The phase-field method is a popular modeling technique used to describe the dynamics of microstructures and their physical properties at the mesoscale. However, because in these simulations the microstructure is described by a system of continuous variables evolving both in space and time, phase-field models are computationally expensive. They require refined spatio-temporal discretization and a parallel computing approach to achieve a useful degree of accuracy. As an alternative, we present and discuss an accelerated phase-field approach which uses a recurrent neural network (RNN) to learn the microstructure evolution in latent space. We perform a comprehensive analysis of different dimensionality-reduction methods and types of recurrent units in RNNs. Specifically, we compare statistical functions combined with linear and nonlinear embedding techniques to represent the microstructure evolution in latent space. We also evaluate several RNN models that implement a gating mechanism, including the long short-term memory (LSTM) unit and the gated recurrent unit (GRU) as the microstructure-learning engine. We analyze the different combinations of these methods on the spinodal decomposition of a two-phase system. Our comparison reveals that describing the microstructure evolution in latent space using an autocorrelation-based principal component analysis (PCA) method is the most efficient. We find that the LSTM and GRU RNN implementations provide comparable accuracy with respect to the high-fidelity phase-field predictions, but with a considerable computational speedup relative to the full simulation. This study not only enhances our understanding of the performance of dimensionality reduction on the microstructure evolution, but it also provides insights on strategies for accelerating phase-field modeling via machine learning techniques.
Abstract not provided.
Journal of the Mechanics and Physics of Solids
We present a combination of machine-learned models that predicts the surface elastic properties of general free surfaces in face-centered cubic (FCC) metals. These models are built by combining a semi-analytical method based on atomistic simulations to calculate surface properties with the artificial neural network (ANN) method or the boosted regression tree (BRT) method. The latter is also used to link bulk properties and surface orientation to surface properties. The surface elastic properties are represented by their invariants considering plane elasticity within a polar method. The resulting models are shown to accurately predict the surface elastic properties of seven pure FCC metals (Cu, Ni, Ag, Au, Al, Pd, Pt). The BRT model reveals the correlations between bulk and corresponding surface properties in terms of invariants, which can be used to guide the design of complex nano-sized particles, wires and films. Finally, by expressing the surface excess energy density as a function of surface elastic invariants, fast predictions of surface energy as a function of in-plane deformations can be made from these model constructs.
Science Advances
Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.