Chemical gradients to control stability and mechanical behavior in nanostructured Pt-Au
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Frontiers in Materials
Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-service performance of a broad range of complex physical machines, devices, and components. A digital twin is generally designed to provide accurate in-silico representation of the form (i.e., appearance) and the functional response of a specified (unique) physical twin. This paper offers a new perspective on how the emerging concept of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is argued that the material itself can be considered as a highly complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy of material length) and function (i.e., response to external stimuli typically characterized through suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital twin can represent the evolution of structure, process, and performance of the material over time, with regard to both process history and in-service environment. This paper establishes the foundational concepts and frameworks needed to formulate and continuously update both the form and function of the digital twin of a selected material physical twin. The form of the proposed material digital twin can be captured effectively using the broadly applicable framework of n-point spatial correlations, while its function at the different length scales can be captured using homogenization and localization process-structure-property surrogate models calibrated to collections of available experimental and physics-based simulation data.
Journal of the Mechanics and Physics of Solids
Garnet-type, solid electrolytes, such as Li7La3Zr2O12 (LLZO), are a promising alternative to liquid electrolytes for lithium-metal batteries. However, such solid-electrolyte materials frequently exhibit undesirable lithium (Li) metal plating and fracture along grain boundaries. In this study, we employ atomistic simulations to investigate the mechanisms and key fracture properties associated with intergranular fracture along one such boundary. Our results show that, in the case of a Σ5(310) grain boundary, this boundary exhibits brittle fracture behavior, i.e. the absence of dislocation activity ahead of the propagating crack tip, accompanied with a decrease in work of separation, peak stress, and maximum stress intensity factor as the temperature increases from 300 K to 1500 K. As the crack propagates, we predict two temperature-dependent Li clustering regimes. For temperatures at or below 900 K, Li tends to cluster in the bulk region away from the crack plane driven by a void-coalescence mechanism concomitant a simultaneous cubic-to-tetragonal phase transition. The tetragonalization of LLZO in this temperature regime acts as an emerging toughening mechanism. At higher temperatures, this phase transition mechanism is suppressed leading to a more uniform distribution of Li throughout the grain-boundary system and lower fracture properties as compared to lower temperatures.
Modelling and Simulation in Materials Science and Engineering
This review discusses atomistic modeling techniques used to simulate radiation damage in crystalline materials. Radiation damage due to energetic particles results in the formation of defects. The subsequent evolution of these defects over multiple length and time scales requiring numerous simulations techniques to model the gamut of behaviors. This work focuses attention on current and new methodologies at the atomistic scale regarding the mechanisms of defect formation at the primary damage state.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Acta Materialia
Alloying is often employed to stabilize nanocrystalline materials against microstructural coarsening. The stabilization process results from the combined effects of thermodynamically reducing the curvature-dominated driving force of grain-boundary motion via solute segregation and kinetically pinning these same grain boundaries by solute drag and Zener pinning. The competition between these stabilization mechanisms depends not only on the grain-boundary character but can also be affected by imposed compositional and thermal fields that further promote or inhibit grain growth. In this work, we study the origin of the stability of immiscible nanocrystalline alloys in both homogeneous and heterogeneous compositional and thermal fields by using a multi-phase-field formulation for anisotropic grain growth with grain-boundary character-dependent segregation properties. This generalized formulation allows us to model the distribution of mobilities of segregated grain boundaries and the role of grain-boundary heterogeneity on solute-induced stabilization. As an illustration, we compare our model predictions to experimental results of microstructures in platinum-gold nanocrystalline alloys. Our results reveal that increasing the initial concentration of available solute progressively slows the rate of grain growth via both heterogeneous grain-boundary segregation and Zener pinning, while increasing the temperature generally weakens thermodynamic stabilization effects due to entropic contributions. Finally, we demonstrate as a proof-of-concept that spatially-varying compositional and thermal fields can be used to construct dynamically-stable, graded, nanostructured materials. We discuss the implications of using such concepts as alternatives to conventional plastic deformation methods.
Materials and Design
Refractory complex concentrated alloys are an emerging class of materials that attracts attention due to their stability and performance at high temperatures. In this study, we investigate the variations in the mechanical and thermal properties across a broad compositional space for the refractory MoNbTaTi quaternary using high-throughput ab-initio calculations and experimental characterization. For all the properties surveyed, we note a good agreement between our modeling predictions and the experimentally measured values. We reveal the particular role of molybdenum (Mo) to achieve high strength when in high concentration. We trace the origin of this phenomenon to a shift from metallic to covalent bonding when the Mo content is increased. Additionally, a mechanistic, dislocation-based description of the yield strength further explains such high strength due to a combination of high bulk and shear moduli, accompanied by the relatively small size of the Mo atom compared to the other atoms in the alloy. Our analysis of the thermodynamics properties shows that regardless of the composition, this class of quaternary alloys shows good stability and low sensitivity to temperature. Taken together, these results pave the way for the design of new high-performance refractory alloys beyond the equimolar composition found in high-entropy alloys.
Scientific Reports
Silicon-based layered nanocomposites, comprised of covalent-metal interfaces, have demonstrated elevated resistance to radiation. The amorphization of the crystalline silicon sublayer during irradiation and/or heating can provide an additional mechanism for accommodating irradiation-induced defects. In this study, we investigated the mechanical strength of irradiated Si-based nanocomposites using atomistic modeling. We first examined dose effects on the defect evolution mechanisms near silicon-gold crystalline and amorphous interfaces. Our simulations reveal the growth of an emergent amorphous interfacial layer with increasing dose, a dominant factor mitigating radiation damage. We then examined the effect of radiation on the mechanical strength of silicon-gold multilayers by constructing yield surfaces. These results demonstrate a rapid onset strength loss with dose. Nearly identical behavior is observed in bulk gold, a phenomenon that can be rooted to the formation of radiation-induced stacking fault tetrahedra which dominate the dislocation emission mechanism during mechanical loading. Taken together, these results advance our understanding of the interaction between radiation-induced point defects and metal-covalent interfaces.
Scientific Reports
During the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.
npj Computational Materials
Diffraction techniques can powerfully and nondestructively probe materials while maintaining high resolution in both space and time. Unfortunately, these characterizations have been limited and sometimes even erroneous due to the difficulty of decoding the desired material information from features of the diffractograms. Currently, these features are identified non-comprehensively via human intuition, so the resulting models can only predict a subset of the available structural information. In the present work we show (i) how to compute machine-identified features that fully summarize a diffractogram and (ii) how to employ machine learning to reliably connect these features to an expanded set of structural statistics. To exemplify this framework, we assessed virtual electron diffractograms generated from atomistic simulations of irradiated copper. When based on machine-identified features rather than human-identified features, our machine-learning model not only predicted one-point statistics (i.e. density) but also a two-point statistic (i.e. spatial distribution) of the defect population. Hence, this work demonstrates that machine-learning models that input machine-identified features significantly advance the state of the art for accurately and robustly decoding diffractograms.
Corrosion Science
Structural alloys may experience corrosion when exposed to molten chloride salts due to selective dissolution of active alloying elements. One way to prevent this is to make the molten salt reducing. For the KCl + MgCl2 eutectic salt mixture, pure Mg can be added to achieve this. However, Mg can form intermetallic compounds with nickel at high temperatures, which may cause alloy embrittlement. This work shows that an optimum level of excess Mg could be added to the molten salt which will prevent corrosion of alloys like 316 H, while not forming any detectable Ni-Mg intermetallic phases on Ni-rich alloy surfaces.