Publications

Results 76–100 of 253

Search results

Jump to search filters

Atomic-scale interaction of a crack and an infiltrating fluid

Chemical Physics Letters: X

Tucker, W.C.; Rimsza, Jessica; Criscenti, Louise; Jones, Reese E.

In this work we investigate the Orowan hypothesis, that decreases in surface energy due to surface adsorbates lead directly to lowered fracture toughness, at an atomic/molecular level. We employ a Lennard-Jones system with a slit crack and an infiltrating fluid, nominally with gold-water properties, and explore steric effects by varying the soft radius of fluid particles and the influence of surface energy/hydrophobicity via the solid–fluid binding energy. Using previously developed methods, we employ the J-integral to quantify the sensitivity of fracture toughness to the influence of the fluid on the crack tip, and exploit dimensionless scaling to discover universal trends in behavior.

More Details

Correlating structure and transport behavior in Li+ and O2 containing pyrrolidinium ionic liquids

Physical Chemistry Chemical Physics

Gittleson, Forrest S.; Ward, Donald K.; Jones, Reese E.; Zarkesh, Ryan A.; Sheth, Tanvi; Foster, Michael E.

Ionic liquids are a unique class of materials with several potential applications in electrochemical energy storage. When used in electrolytes, these highly coordinating solvents can influence device performance through their high viscosities and strong solvation behaviors. In this work, we explore the effects of pyrrolidinium cation structure and Li+ concentration on transport processes in ionic liquid electrolytes. We present correlated experimental measurements and molecular simulations of Li+ mobility and O2 diffusivity, and connect these results to dynamic molecular structural information and device performance. In the context of Li-O2/Li-air battery chemistries, we find that Li+ mobility is largely influenced by Li+-anion coordination, but that both Li+ and O2 diffusion may be affected by variations of the pyrrolidinium cation and Li+ concentration.

More Details

Chemical Effects on Subcritical Fracture in Silica From Molecular Dynamics Simulations

Journal of Geophysical Research: Solid Earth

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Fracture toughness of silicates is reduced in aqueous environments due to water-silica interactions at the crack tip. To investigate this effect, classical molecular dynamics simulations using the bond-order-based reactive force field (ReaxFF) were used to simulate silica fracture. The chemical and mechanical aspects were separated by simulating fracture in (a) a vacuum with dynamic loading, (b) an aqueous environment with dynamic loading, and (c) an aqueous environment with static subcritical mechanical loading to track silica dissolution. The addition of water to silica fracture reduced the silica fracture toughness by ~25%, a trend consistent with experimentally reported results. Analysis of Si─O bonds in the process zone and calculations of dissipation energy associated with fracture indicated that water relaxes the entire process zone and not just the surface. Additionally, the crack tip sharpens during fracture in water and an increased number of microscopic propagation events occur. This results in earlier fracture in systems with increasing mechanical loading in aqueous conditions, despite the lack of significant silica dissolution. Therefore, the threshold for Si─O bond breakage has been lowered in the presence of water and the reduction in fracture toughness is due to structural and energetic changes in the silica, rather than specific dissolution events.

More Details

Chemical-Mechanical Modeling of Subcritical-to-Critical Fracture in Geomaterials

Criscenti, Louise; Rimsza, Jessica; Jones, Reese E.; Matteo, Edward N.; Payne, Clay

Predicting chemical-mechanical fracture initiation and propagation in materials is a critical problem, with broad relevance to a host of geoscience applications including subsurface storage and waste disposal, geothermal energy development, and oil and gas extraction. In this project, we have developed molecular simulation and coarse- graining techniques to obtain an atomistic-level understanding of the chemical- mechanical mechanisms that control subcritical crack propagation in materials under tension and impact the fracture toughness. We have applied these techniques to the fracture of fused quartz in vacuum, in distilled water, and in two salt solutions - 1M NaC1, 1M NaOH - that form relatively acidic and basic solutions respectively. We have also established the capability to conduct double-compression double-cleavage experiments in an environmental chamber to observe material fracture in aqueous solution. Both simulations and experiments indicate that fractures propagate fastest in NaC1 solutions, slower in distilled water, and even slower in air.

More Details

An atomic-scale evaluation of the fracture toughness of silica glass

Journal of Physics Condensed Matter

Jones, Reese E.; Rimsza, Jessica; Criscenti, Louise

Using an atomistic technique consistent with continuum balance laws and drawing on classical fracture mechanics theory, we estimate the resistance to fracture propagation of amorphous silica. We discuss correspondence and deviations from classical linear elastic fracture mechanics theory including size dependence, rigid/floppy modes of deformation, and the effects of surface energy and stress.

More Details

Interaction of NaOH solutions with silica surfaces

Journal of Colloid and Interface Science

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Hypothesis: Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Simulations: Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Findings: Across the NaOH concentrations (0.01 M − 1.0 M), ∼50% of the Na+ ions were concentrated in the surface region, developing silica surface charges between − 0.01 C/m2 (0.01 M NaOH) and − 0.76 C/m2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate, and tridentate configurations and two additional structures, with Na+ ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na+ ions by bridging oxygen atoms indicates partial or complete incorporation of Na+ ions into the silica surface. Residence time analysis identified that Na+ ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na+ ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na+ adsorption and lifetimes have implications for the stability of silica surfaces.

More Details

Crack propagation in silica from reactive classical molecular dynamics simulations

Journal of the American Ceramic Society

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Mechanistic insight into the process of crack growth can be obtained through molecular dynamics (MD) simulations. In this investigation of fracture propagation, a slit crack was introduced into an atomistic amorphous silica model and mode I stress was applied through far-field loading until the crack propagates. Atomic displacements and forces and an Irving–Kirkwood method with a Lagrangian kernel estimator were used to calculate the J-integral of classical fracture mechanics around the crack tip. The resulting fracture toughness (KIC), 0.76 ± 0.16 MPa√m, agrees with experimental values. In addition, the stress fields and dissipation energies around the slit crack indicate the development of an inelastic region ~30Å in diameter. This is one of the first reports of KIC values obtained from up-scaled atomic-level energies and stresses through the J-integral. The application of the ReaxFF classical MD force field in this study provides the basis for future research into crack growth in multicomponent oxides in a variety of environmental conditions.

More Details

Influence of defects on the thermal conductivity of compressed LiF

Physical Review B

Jones, Reese E.; Ward, Donald K.

Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.

More Details

Polymorphic improvement of Stillinger-Weber potential for InGaN

Journal of Applied Physics

Zhou, Xiaowang; Jones, Reese E.; Chu, Kevin

A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.

More Details
Results 76–100 of 253
Results 76–100 of 253