Publications

Results 76–100 of 184

Search results

Jump to search filters

Preserving lagrangian structure in nonlinear model reduction with application to structural dynamics

SIAM Journal on Scientific Computing

Carlberg, Kevin; Tuminaro, Raymond S.; Boggs, Paul

This work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's "Lagrangian ingredients"-the Riemannian metric, the potential-energy function, the dissipation function, and the external force-and subsequently derives reduced-order equations of motion by applying the (forced) Euler-Lagrange equation with these quantities. From the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.

More Details

On the scalability of the Albany/FELIX first-order stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets

Procedia Computer Science

Kalashnikova, Irina; Tuminaro, Raymond S.; Perego, Mauro P.; Salinger, Andrew G.; Price, Stephen F.

We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditioner results in faster linear solve times but the ILU preconditioner exhibits better scalability. A weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. Here, we show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.

More Details

MueLu User's Guid for Trilinos Version 11.12

Hu, Jonathan J.; Prokopenko, Andrey V.; Wiesner, Tobias A.; Siefert, Christopher S.; Tuminaro, Raymond S.

This is the official user guide for the M UE L U multigrid library in Trilinos version 11.12. This guide provides an overview of M UE L U , its capabilities, and instructions for new users who want to start using M UE L U with a minimum of effort. Detailed information is given on how to drive M UE L U through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms. Finally, readers will find a comprehensive listing of available M UE L U options. Any options not documented in this manual should be considered strictly experimental.

More Details

Breaking Computational Barriers: Real-time Analysis and Optimization with Large-scale Nonlinear Models via Model Reduction

Drohmann, Martin; Tuminaro, Raymond S.; Boggs, Paul T.; Ray, Jaideep R.; van Bloemen Waanders, Bart G.; Carlberg, Kevin T.

Model reduction for dynamical systems is a promising approach for reducing the computational cost of large-scale physics-based simulations to enable high-fidelity models to be used in many- query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts. While model reduction works well for specialized problems such as linear time-invariant systems, it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for systems with general nonlinearities. This report describes several advances that enable nonlinear reduced-order models (ROMs) to be deployed in a variety of time-critical settings. First, we present an error bound for the Gauss-Newton with Approximated Tensors (GNAT) nonlinear model reduction technique. This bound allows the state-space error for the GNAT method to be quantified when applied with the backward Euler time-integration scheme. Second, we present a methodology for preserving classical Lagrangian structure in nonlinear model reduction. This technique guarantees that important properties--such as energy conservation and symplectic time-evolution maps--are preserved when performing model reduction for models described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third, we present a novel technique for decreasing the temporal complexity --defined as the number of Newton-like iterations performed over the course of the simulation--by exploiting time-domain data. Fourth, we describe a novel method for refining projection-based reduced-order models a posteriori using a goal-oriented framework similar to mesh-adaptive h -refinement in finite elements. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing the ROM with a 'failsafe' mechanism in the event of insufficient training data. Finally, we present the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced- order-model errors. This enables ROMs to be rigorously incorporated in uncertainty-quantification settings, as the error model can be treated as a source of epistemic uncertainty. This work was completed as part of a Truman Fellowship appointment. We note that much additional work was performed as part of the Fellowship. One salient project is the development of the Trilinos-based model-reduction software module Razor , which is currently bundled with the Albany PDE code and currently allows nonlinear reduced-order models to be constructed for any application supported in Albany. Other important projects include the following: 1. ROMES-equipped ROMs for Bayesian inference: K. Carlberg, M. Drohmann, F. Lu (Lawrence Berkeley National Laboratory), M. Morzfeld (Lawrence Berkeley National Laboratory). 2. ROM-enabled Krylov-subspace recycling: K. Carlberg, V. Forstall (University of Maryland), P. Tsuji, R. Tuminaro. 3. A pseudo balanced POD method using only dual snapshots: K. Carlberg, M. Sarovar. 4. An analysis of discrete v. continuous optimality in nonlinear model reduction: K. Carlberg, M. Barone, H. Antil (George Mason University). Journal articles for these projects are in progress at the time of this writing.

More Details
Results 76–100 of 184
Results 76–100 of 184