Improving the hexahedral quality obtained from streaming mesh refinement
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones in more detail; the next section provides an overview of the project and how the current progress fits into it.
In this report, we present the novel functionality of parallel tetrahedral mesh refinement which we have implemented in MOAB. This report details work done to implement parallel, edge-based, tetrahedral refinement into MOAB. The theoretical basis for this work is contained in [PT04, PT05, TP06] while information on design, performance, and operation specific to MOAB are contained herein. As MOAB is intended mainly for use in pre-processing and simulation (as opposed to the post-processing bent of previous papers), the primary use case is different: rather than refining elements with non-linear basis functions, the goal is to increase the number of degrees of freedom in some region in order to more accurately represent the solution to some system of equations that cannot be solved analytically. Also, MOAB has a unique mesh representation which impacts the algorithm. This introduction contains a brief review of streaming edge-based tetrahedral refinement. The remainder of the report is broken into three sections: design and implementation, performance, and conclusions. Appendix A contains instructions for end users (simulation authors) on how to employ the refiner.
Abstract not provided.
This report summarizes the existing statistical engines in VTK/Titan and presents the parallel versions thereof which have already been implemented. The ease of use of these parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; then, this theoretical property is verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.
We present a formula for the pairwise update of arbitrary-order centered statistical moments. This formula is of particular interest to compute such moments in parallel for large-scale, distributed data sets. As a corollary, we indicate a specialization of this formula for incremental updates, of particular interest to streaming implementations. Finally, we provide pairwise and incremental update formulas for the covariance. Centered statistical moments are one of the most widely used tools in descriptive statistics. It is therefore essential for statistical analysis packages that robust and efficient algorithms be devised and implemented. However, robustness and speed of execution, in this context as well as in others, tend to be orthogonal. For instance, it is well known1 that algorithms for calculating centered statistical moments that utilize sum of powers for the sake of execution speed (one-pass algorithms) lead to unacceptable numerical instability.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report specifies the way in which Gauss points shall be named and ordered when storing them in an EXODUS II file so that they may be properly interpreted by visualization tools. This naming convention covers hexahedra and tetrahedra. Future revisions of this document will cover quadrilaterals, triangles, and shell elements.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.
The purpose of this report is to define a standard interface for storing and retrieving novel, non-traditional partial differential equation (PDE) discretizations. Although it focuses specifically on finite elements where state is associated with edges and faces of volumetric elements rather than nodes and the elements themselves (as implemented in ALEGRA), the proposed interface should be general enough to accommodate most discretizations, including hp-adaptive finite elements and even mimetic techniques that define fields over arbitrary polyhedra. This report reviews the representation of edge and face elements as implemented by ALEGRA. It then specifies a convention for storing these elements in EXODUS files by extending the EXODUS API to include edge and face blocks in addition to element blocks. Finally, it presents several techniques for rendering edge and face elements using VTK and ParaView, including the use of VTK's generic dataset interface for interpolating values interior to edges and faces.
Traditional cluster monitoring approaches consider nodes in singleton, using manufacturer-specified extreme limits as thresholds for failure ''prediction''. We have developed a tool, OVIS, for monitoring and analysis of large computational platforms which, instead, uses a statistical approach to characterize single device behaviors from those of a large number of statistically similar devices. Baseline capabilities of OVIS include the visual display of deterministic information about state variables (e.g., temperature, CPU utilization, fan speed) and their aggregate statistics. Visual consideration of the cluster as a comparative ensemble, rather than as singleton nodes, is an easy and useful method for tuning cluster configuration and determining effects of real-time changes.
Abstract not provided.
Verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric is a real number assigned to one of these shapes depending on its particular vertex coordinates. These metrics are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. The geometric qualities of these regions is usually strongly tied to the accuracy these solvers are able to obtain in their approximations. The subroutines are written in C++ and have a simple C interface. Each metric may be evaluated individually or in combination. When multiple metrics are evaluated at once, they share common calculations to lower the cost of the evaluation.
This report contains an algorithm for decomposing higher-order finite elementsinto regions appropriate for isosurfacing and proves the conditions under which thealgorithm will terminate. Finite elements are used to create piecewise polynomialapproximants to the solution of partial differential equations for which no analyticalsolution exists. These polynomials represent fields such as pressure, stress, and mo-mentim. In the past, these polynomials have been linear in each parametric coordinate.Each polynomial coefficient must be uniquely determined by a simulation, and thesecoefficients are called degrees of freedom. When there are not enough degrees of free-dom, simulations will typically fail to produce a valid approximation to the solution.Recent work has shown that increasing the number of degrees of freedom by increas-ing the order of the polynomial approximation (instead of increasing the number offinite elements, each of which has its own set of coefficients) can allow some typesof simulations to produce a valid approximation with many fewer degrees of freedomthan increasing the number of finite elements alone. However, once the simulation hasdetermined the values of all the coefficients in a higher-order approximant, tools donot exist for visual inspection of the solution.This report focuses on a technique for the visual inspection of higher-order finiteelement simulation results based on decomposing each finite element into simplicialregions where existing visualization algorithms such as isosurfacing will work. Therequirements of the isosurfacing algorithm are enumerated and related to the placeswhere the partial derivatives of the polynomial become zero. The original isosurfacingalgorithm is then applied to each of these regions in turn.3 AcknowledgementThe authors would like to thank David Day and Louis Romero for their insight into poly-nomial system solvers and the LDRD Senior Council for the opportunity to pursue thisresearch. The authors were supported by the United States Department of Energy, Officeof Defense Programs by the Labratory Directed Research and Development Senior Coun-cil, project 90499. Sandia is a multiprogram laboratory operated by Sandia Corporation,a Lockheed-Martin Company, for the United States Department of Energy under contractDE-AC04-94-AL85000.4
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.