Publications

Results 26–50 of 126

Search results

Jump to search filters

Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol

ACS Catalysis

Zhou, Bo; Huang, Erxiong H.; Almeida, Raybel A.; Gurses, Sadi; Ungar, Alexander; Zetterberg, Johan; Kulkarni, Ambarish; Kronawitter, Coleman X.; Osborn, David L.; Hansen, Nils H.; Frank, Jonathan H.

Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.

More Details

Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate

Journal of Physical Chemistry A

Hansen, Nils H.; Rousso, Aric C.; Jasper, Ahren W.; Ju, Yiguang

The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(= O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry ψ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.

More Details

Nucleation of soot: Experimental assessment of the role of polycyclic aromatic hydrocarbon (PAH) dimers

Zeitschrift fur Physikalische Chemie

Hansen, Nils H.; Adamson, Brian A.; Skeen, Scott A.; Ahmed, Musahid

The irreversible dimerization of polycyclic aromatic hydrocarbons (PAHs)-typically pyrene (C16H10) dimerization-is widely used in combustion chemistry models to describe the soot particle inception step. This paper concerns itself with the detection and identification of dimers of flame-synthesized PAH radicals and closed-shell molecules and an experimental assessment of the role of these PAH dimers for the nucleation of soot. To this end, flame-generated species were extracted from an inverse co-flow flame of ethylene at atmospheric pressure and immediately diluted with excess nitrogen before the mixture was analyzed using flame-sampling tandem mass spectrometry with collision-induced fragmentation. Signal at m/z = 404.157 (C32H20) and m/z = 452.157 (C36H20) were detected and identified as dimers of closed-shell C16H10 and C18H10 monomers, respectively. A complex between a C13H9 radical and a C24H12 closed-shell PAH was observed at m/z = 465.164 (C37H21). However, a rigorous analysis of the flame-sampled mass spectra as a function of the dilution ratio, defined as the ratio of the flow rates of the diluent nitrogen to the sampled gases, indicates that the observed dimers are not flame-born, but are produced in the sampling line. In agreement with theoretical considerations, this paper provides experimental evidence that pyrene dimers cannot be a key intermediate in particle inception at elevated flame temperatures.

More Details

Influence of ozone addition on the low-temperature oxidation of dimethyl ether in a jet-stirred reactor

Combustion and Flame

Hansen, Nils H.; Liao, Handong; Kang, Shiqing; Zhang, Feng; Yang, B.

The influence of ozone addition on the low-temperature oxidation of dimethyl ether (DME) was investigated experimentally in an atmospheric-pressure jet-stirred reactor, over the temperature range of 400–800 K. Detailed speciation information was obtained by employing synchrotron vacuum ultraviolet photoionization mass spectrometry. Experimental results revealed that the ozone addition had a positive influence on the production of the highly reactive intermediates. Moreover, the low-temperature reactivity of DME was significantly enhanced, which resulted in the broadening of the temperature window of fuel consumption and intermediates formation at lower temperatures. Therefore, novel experimental data of the low temperature regime (400–500 K) could be obtained. The data set of this special temperature regime yielded insights into the DME low-temperature kinetics, which were further supported with modeling analysis based on two existing DME models (Metcalfe et al., 2013; Wang et al., 2015) combined with an ozone sub-mechanism (Zhao et al., 2016). The analysis showed that temperature-sensitive reactions such as the second oxygen channel could be nearly “frozen” at this low temperature (T < 440 K). Furthermore, the production of some intermediates was found to be strongly governed by reaction pairs, such as CH3OCH2 + O2 = CH3OCH2O2 and CH3OCH2 + O2 = 2CH2O + OH for the CH2O formation. This finding could be useful for examining branching ratios in both models, and the analysis suggested the further modification of the branching ratios for the oxygen addition to CH3OCH2O2 pathways and the CH3OCH2O2 self-reactions were required. Finally, the influences of the O3 addition in the sensitive reactions of the fuel initial low-temperature oxidation were investigated in this work. It was interesting to note that O3 addition could change the dominating reactions in the initial low-temperature oxidation, by the addition of some O3-related pathways with relatively high sensitivity.

More Details

Role of ring-enlargement reactions in the formation of aromatic hydrocarbons

Physical Chemistry Chemical Physics

Hansen, Nils H.; Baroncelli, Martina; Mao, Qian; Galle, Simon; Pitsch, Heinz

Ring-enlargement reactions can provide a fast route towards the formation of six-membered single-ring or polycyclic aromatic hydrocarbons (PAHs). To investigate the participation of the cyclopentadienyl (C5H5) radical in ring-enlargement reactions in high-temperature environments, a mass-spectrometric study was conducted. Experimental access to the C5H5 high-temperature chemistry was provided by two counterflow diffusion flames. Cyclopentene was chosen as a primary fuel given the large amount of resonantly stabilized cyclopentadienyl radicals produced by its decomposition and its high tendency to form PAHs. In a second experiment, methane was added to the fuel stream to promote methyl addition pathways and to assess the importance of ring-enlargement reactions for PAH growth. The experimental dataset includes mole fraction profiles of small intermediate hydrocarbons and of several larger species featuring up to four condensed aromatic rings. Results show that, while the addition of methane enhances the production of methylcyclopentadiene and benzene, the concentration of larger polycyclic hydrocarbons is reduced. The increase of benzene is probably attributable to the interaction between the methyl and the cyclopentadienyl radicals. However, the formation of larger aromatics seems to be dominated only by the cyclopentadienyl driven molecular-growth routes which are hampered by the addition of methane. In addition to the experimental work, two chemical mechanisms were tested and newly calculated reaction rates for cyclopentadiene reactions were included. In an attempt to assess the impact of cyclopentadienyl ring-enlargement chemistry on the mechanisms' predictivity, pathways to form benzene, toluene, and ethylbenzene were investigated. Results show that the updated mechanism provides an improved agreement between the computed and measured aromatics concentrations. Nevertheless, a detailed study of the single reaction steps leading to toluene, styrene, and ethylbenzene would be certainly beneficial.

More Details

Effects of water addition on the combustion of iso-octane investigated in laminar flames, low-temperature reactors, and an HCCI engine

Combustion and Flame

Hansen, Nils H.; Schmitt, Steffen; Wick, Maximilian; Wouters, Christian; Ruwe, Lena; Graf, Isabelle; Andert, Jakob; Pischinger, Stefan

In this work, the effect of H2O injection on the combustion process of iso-octane was investigated with the aim to better understand the suitability of water addition as a potential engine control parameter for homogeneous-charge compression ignition (HCCI) combustion. Several experiments were combined including premixed low-pressure flames, a jet-stirred reactor (JSR) and a plug-flow reactor (PFR), both at atmospheric pressure, and a single-cylinder research engine (SCRE) operated with either iso-octane or RON 98 gasoline. The thermal effect of H2O addition was determined in laminar premixed iso-octane/O2/Ar flames (equivalence ratio $Φ$=1.4, 40 mbar) with H2O mole fractions of 0 to 0.22, where water addition reduced the temperature measured by laser-induced fluorescence (LIF) by up to 110 K. Speciation data were obtained from these flames as well as in the JSR ($Φ$=0.65, 933 mbar) and PFR experiments ($Φ$=0.65, 970 mbar) with and without H2O addition in the low- to intermediate temperature regime from 700–1100 K. The chemical analysis in these flame and reactor experiments was performed using molecular-beam mass spectrometry (MBMS) employing either electron ionization (EI) in the PFR and premixed flame or single-photon ionization (PI) by tunable vacuum-ultraviolet radiation in the JSR. The effects on species mole fractions were small which is supported by predictions from chemical-kinetic simulations. Quantitative speciation data of the exhaust gas of the SCRE were obtained by using Fourier-transform infrared (FTIR) spectroscopy. A very similar species pool was detected in the laboratory-scale experiments and for the engine operation. It is thus assumed that these results could assist in guiding both the improvement of fundamental chemical-kinetic as well as HCCI engine control models.

More Details

Chemical insights into the larger sooting tendency of 2-methyl-2-butene compared to n-pentane

Combustion and Flame

Hansen, Nils H.; Leon, Larisa; Ruwe, Lena; Moshammer, Kai; Seidel, Lars; Shrestha, Krishna P.; Wang, Xiaoxiao; Mauss, Fabian

A comprehensive, chemically detailed mechanism for the combustion of 2-methyl-2-butene and n-pentane is presented to provide insights into the different sooting tendencies of these two structurally different C5 hydrocarbons. A hierarchically assembled mechanism has been developed to specifically target speciation data from low-pressure premixed flames of 2-methyl-2-butene [Ruwe et al., Combust. Flame, 175, 34-46, 2017] and newly measured mole fraction data for a fuel-rich (ɸ=1.8) n-pentane flame, in which species profiles up to phenol were quantified. The partially isomer-resolved chemical composition of this flame was determined using flame-sampling molecular-beam mass spectrometry with single-photon ionization by tunable, synchrotron-generated vacuum-ultraviolet radiation. The presented model, which includes a newly determined, consistent set of the thermochemistry data for the C5 species, presents overall satisfactory capabilities to predict the mole fraction profiles of common combustion intermediates. The analysis of the model predictions revealed the fuel-structure dependencies (i.e. saturated vs. unsaturated and linear vs. branched) of the formation of small aromatic species that are considered as soot precursors. The propensity of the 2-methyl-2-butene flame to form larger concentrations of aromatic species was traced back to the readily available formation routes of several small precursor molecules and the efficient formation of “first aromatic rings” beyond benzene.

More Details

Isomer-Selective Detection of Keto-Hydroperoxides in the Low-Temperature Oxidation of Tetrahydrofuran

Journal of Physical Chemistry A

Hansen, Nils H.; Jasper, Ahren W.; Moshammer, Kai

Keto-hydroperoxides (KHPs) are reactive, partially oxidized intermediates that play a central role in chain-branching reactions during the gas-phase low-temperature oxidation of hydrocarbons and oxygenated species. Although multiple isomeric forms of the KHP intermediate are possible in complex oxidation environments when multiple reactant radicals exist that contain nonequivalent O2 addition sites, isomer-resolved data of KHPs have not been reported. In this work, we provide partially isomer-resolved detection and quantification of the KHPs that form during the low-temperature oxidation of tetrahydrofuran (THF, cycl.-O-CH2CH2CH2CH2-). We describe how these short-lived KHPs were detected, identified, and quantified using integrated experimental and theoretical approaches. The experimental approaches were based on direct molecular-beam sampling from a jet-stirred reactor operated at near-atmospheric pressure and at temperatures between 500 and 700 K, followed by mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation, and the identification of fragmentation patterns. The interpretation of the experiments was guided by theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. On the basis of the experimentally observed and theoretically calculated ionization and fragment appearance energies, KHP isomers could be distinguished as originating from H-abstraction reactions from either the α-C adjacent to the O atom or the β-C atoms. Temperature-dependent concentration profiles of the partially resolved isomeric KHP intermediates were determined in the range of 500-700 K, and the results indicate that the observed KHP isomers are formed overwhelmingly (∼99%) from the α-C THF radical. Comparisons of the partially isomer-resolved quantification of the KHPs to up-to-date kinetic modeling results reveal new opportunities for the development of a next-generation THF oxidation mechanism.

More Details

Exploring hydroperoxides in combustion: History, recent advances and perspectives

Progress in Energy and Combustion Science

Hansen, Nils H.; Wang, Zhandong; Herbinet, Olivier; Battin-Leclerc, Frederique

The aim of this paper is to review recent progress in detection and quantification of hydroperoxides, and to understand their reaction kinetics in combustion environments. Hydroperoxides, characterized by an –OOH group, are ubiquitous in the atmospheric oxidation of volatile organic compounds (∼300 K), and in the liquid and gas phase oxidation of fuel components at elevated temperatures (∼400–1000 K). They are responsible for two-stage fuel ignition in internal combustion engines and they play an important role in the formation and evolution of secondary organic aerosols in the atmosphere. The introduction outlines the importance of hydroperoxide chemistry in combustion reaction processes. In addition to this main topic, the role of hydroperoxides in atmospheric and liquid phase oxidation chemistry is also introduced, for a more general perspective. The second part of this paper briefly reviews the mechanistic insights of hydroperoxide chemistry in combustion systems, including experimental detection of these reactive species before 2010. Since that time significant progress has been made by advanced diagnostic techniques like tunable synchrotron vacuum ultraviolet photoionization mass spectrometry and infrared cavity ring-down spectroscopy. The third chapter of this work summarizes progress in gas phase oxidation experiments to measure hydrogen peroxide, alkyl hydroperoxides, olefinic hydroperoxides, ketohydroperoxides, and more complex hydroperoxides that include as many as five oxygen atoms. The fourth section details recent advances in understanding the combustion chemistry of hydroperoxides, involving the formation of carboxylic acids and diones, as well as the development of oxidation models that include a third O2 addition reaction mechanism. Finally, challenges are discussed, and perspectives are offered regarding the future of accurately measuring molecule-specific hydroperoxide concentrations and understanding their respective reaction kinetics.

More Details

Investigating the effect of oxy-fuel combustion and light coal volatiles interaction: A mass spectrometric study

Combustion and Flame

Hansen, Nils H.; Baroncelli, Martina; Felsmann, Daniel; Pitsch, Heinz

Given the multi-physical nature of coal combustion, the development and validation of detailed chemical models reproducing coal volatiles combustion under oxy-fuel conditions is a crucial step towards the advancement of predictive full-scale simulations. During the devolatilization process, a large variety of gases is released and undergoes secondary pyrolysis and oxidation reactions. Therefore, the ability to capture their interactions is a prerequisite for each chemical model used in its detailed or reduced form to simulate these processes. In this work, a high-resolution time-of-flight molecular-beam mass spectrometer was employed to enable fast and simultaneous detection of stable and unstable species in counterflow flames of typical light volatiles. Following an approach of increasing complexity, carbon dioxide and methane were progressively added to an argon diluted acetylene base flame. For the three flames investigated here, results showed a significant increase in the concentration of C2 and C3 hydrocarbons and oxygenated compounds caused by methane addition to the acetylene flame. By hindering the production of the butadienyl radical, the addition of methane induces the reduction of benzene which triggers the decrease of aromatic species. Conversely, CO2 addition did not have significant effects on intermediates. To guide and interpret the measurements, numerical simulations with two existing chemical models were performed and the results were found to be consistent with the experimental data for small hydrocarbons. Some discrepancies were found between the two model predictions and between simulations and experiments for C4 and C5 species. Additionally, numerical simulations were found to overestimate the role of the methyl radical in aromatics formation.

More Details

The C5 chemistry preceding the formation of polycyclic aromatic hydrocarbons in a premixed 1-pentene flame

Combustion and Flame

Hansen, Nils H.; Ruwe, Lena; Cai, Liming; Moshammer, Kai; Pitsch, Heinz

We report the formation of small polycyclic aromatic hydrocarbons (PAHs) and their precursors can be strongly affected by reactions of C5 species. For improving existing combustion mechanisms for small PAH formation, it is therefore valuable to understand the fuel-specific chemistry of C5 fuels. To this end, we provide quantitative isomer-resolved species profiles measured in a laminar premixed (Φ = 1.8) low-pressure (4 kPa) flame of 1-pentene with photoionization molecular-beam mass spectrometry (PI-MBMS) using tunable synchrotron vacuum-ultraviolet (VUV) radiation. These experimental results are accompanied with numerical simulations, starting from models from the literature by Wang et al. [JetSurF version 2.0 (2010)] and Healy et al. [Energy Fuels 24 (2010) 1521–1528] that were developed for different fuels, but which include 1-pentene as an intermediate, and by Narayanaswamy et al. [Combust. Flame 157 (2010) 1879–1898] focusing on the small PAH chemistry. Taking observed discrepancies between experimental results and simulations into consideration, a mechanism for C5 chemistry was newly developed including PAH formation pathways, and its performance analyzed in detail. Special emphasis was placed on the initial fuel consumption of 1-pentene as well as on formation pathways of small aromatics. The mechanisms show differences regarding fuel decomposition and hydrocarbon growth reactions. These contribute to noticeable differences between the simulations with different models on one hand, and deviations between model predictions and experimental results on the other. While the new model presents overall satisfactory capabilities to predict the mole fraction profiles of common combustion intermediates, the predictive capability of the literature models was not fully satisfying for some intermediate species, including C4H6, C7H8, and C10H8. Lastly, the results indicate that the fuel-specific C5 reaction routes as well as the mechanism for small PAH formation need further investigation.

More Details

Ion chemistry in premixed rich methane flames

Combustion and Flame

Hansen, Nils H.; Chen, Bingjie; Wang, Haoyi; Wang, Zhandong; Alquaity, Awad B.S.; Wang, Heng; Sarathy, S.M.

External electric field and plasma assisted combustion show great potential for combustion enhancement, e.g., emission and ignition control. To understand soot suppression by external electric fields and flame ignition in spark ignition engines, flame ion chemistry needs to be investigated and developed. In this work, comprehensive and systematic investigations of neutral and ion chemistry are conducted in premixed rich methane flames. Cations are measured by quadrupole molecular beam mass spectrometry (MBMS), and neutrals are measured by synchrotron vacuum ultra violet photoionization time of flight MBMS (SVUV-PI-TOF-MBMS). The molecular formula and dominant isomers of various measured cations are identified based on literature survey and quantum chemistry calculations. Experimentally, we found that H3O+ is the dominant cation in slightly rich flame (ϕ=1.5), but C3H3+ is the most significant in very rich flames (ϕ=1.8 and 2.0). An updated ion chemistry model is proposed and used to explain the effects of changing equivalence ratio. To further verify key ion-neutral reaction pathways, measured neutral profiles are compared with cation profiles experimentally. Detailed cation and neutral measurements and numerical simulations by this work help to understand and develop ion chemistry models. Deficiencies in our current understanding of ion chemistry are also highlighted to motivate further research.

More Details

Investigation of sampling-probe distorted temperature fields with X-ray fluorescence spectroscopy

Proceedings of the Combustion Institute

Hansen, Nils H.; Tranter, R.S.; Randazzo, J.B.; Lockhart, J.P.A.

Flame-sampling experiments, especially in conjunction with laminar low-pressure premixed flames, are routinely used in combustion chemistry studies to unravel the identities and quantities of key intermediates and their pathways. In many instances, however, an unambiguous interpretation of the experimental and modeling results is hampered by the uncertainties about the probe-induced, perturbed temperature profile. To overcome this limitation, two-dimensional perturbations of the temperature field caused by sampling probes with different geometries have been investigated using synchrotron-based X-ray fluorescence spectroscopy. In these experiments, which were performed at the 7-BM beamline of the Advanced Photon Source (APS) at the Argonne National Laboratory, a continuous beam of hard X-rays at 15keV was used to excite krypton atoms that were added in a concentration of 5vol.-% to the unburnt gas mixture and the resulting krypton fluorescence at 12.65keV was subsequently collected. The highly spatially resolved signal was converted into the local flame temperature to obtain temperature fields at various burner-probe separations as functions of the distance to the burner surface and the radial distance from the centerline. Multiple measurements were performed with different probe geometries and because of the observed impact on the temperature profiles the results clearly revealed the need to specify the sampling probe design to enable quantitative and meaningful comparisons of modeling results with flame-sampled mole fraction data.

More Details

Identification of the Criegee intermediate reaction network in ethylene ozonolysis: Impact on energy conversion strategies and atmospheric chemistry

Physical Chemistry Chemical Physics

Hansen, Nils H.; Rousso, Aric C.; Jasper, Ahren W.; Ju, Yiguang

The reaction network of the simplest Criegee intermediate (CI) CH2OO has been studied experimentally during the ozonolysis of ethylene. The results provide valuable information about plasma- and ozone-assisted combustion processes and atmospheric aerosol formation. A network of CI reactions was identified, which can be described best by the sequential addition of CI with ethylene, water, formic acid, and other molecules containing hydroxy, aldehyde, and hydroperoxy functional groups. Species resulting from as many as four sequential CI addition reactions were observed, and these species are highly oxygenated oligomers that are known components of secondary organic aerosols in the atmosphere. Insights into these reaction pathways were obtained from a near-atmospheric pressure jet-stirred reactor coupled to a high-resolution molecular-beam mass spectrometer. The mass spectrometer employs single-photon ionization with synchrotron-generated, tunable vacuum-ultraviolet radiation to minimize fragmentation via near-threshold ionization and to observe mass-selected photoionization efficiency (PIE) curves. Species identification is supported by comparison of the mass-selected, experimentally observed photo-ionization thresholds with theoretical calculations for the ionization energies. A variety of multi-functional peroxide species are identified, including hydroxymethyl hydroperoxide (HOCH2OOH), hydroperoxymethyl formate (HOOCH2OCHO), methoxymethyl hydroperoxide (CH3OCH2OOH), ethoxymethyl hydroperoxide (C2H5OCH2OOH), 2-hydroxyethyl hydroperoxide (HOC2H4OOH), dihydroperoxy methane (HOOCH2OOH), and 1-hydroperoxypropan-2-one [CH3C(O)CH2OOH]. A semi-quantitative analysis of the signal intensities as a function of successive CI additions and temperature provides mechanistic insights and valuable information for future modeling work of the associated energy conversion processes and atmospheric chemistry. This work provides further evidence that the CI is a key intermediate in the formation of oligomeric species via the formation of hydroperoxides.

More Details
Results 26–50 of 126
Results 26–50 of 126