Nonlocal models naturally handle a range of physics of interest to SNL, but discretization of their underlying integral operators poses mathematical challenges to realize the accuracy and robustness commonplace in discretization of local counterparts. This project focuses on the concept of asymptotic compatibility, namely preservation of the limit of the discrete nonlocal model to a corresponding well-understood local solution. We address challenges that have traditionally troubled nonlocal mechanics models primarily related to consistency guarantees and boundary conditions. For simple problems such as diffusion and linear elasticity we have developed complete error analysis theory providing consistency guarantees. We then take these foundational tools to develop new state-of-the-art capabilities for: lithiation-induced failure in batteries, ductile failure of problems driven by contact, blast-on-structure induced failure, brittle/ductile failure of thin structures. We also summarize ongoing efforts using these frameworks in data-driven modeling contexts. This report provides a high-level summary of all publications which followed from these efforts.
Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper, we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree quadrature, a reformulation of the nonlocal dilatation, and a consistent handling of the nonlocal traction condition to construct a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in the presence of evolving fractures, whose a priori unknown location render consistent treatment difficult. In the absence of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical engineering problems.
A key challenge to nonlocal models is the analytical complexity of deriving them from first principles, and frequently their use is justified a posteriori. In this work we extract nonlocal models from data, circumventing these challenges and providing data-driven justification for the resulting model form. Extracting data-driven surrogates is a major challenge for machine learning (ML) approaches, due to nonlinearities and lack of convexity — it is particularly challenging to extract surrogates which are provably well-posed and numerically stable. Our scheme not only yields a convex optimization problem, but also allows extraction of nonlocal models whose kernels may be partially negative while maintaining well-posedness even in small-data regimes. To achieve this, based on established nonlocal theory, we embed in our algorithm sufficient conditions on the non-positive part of the kernel that guarantee well-posedness of the learnt operator. These conditions are imposed as inequality constraints to meet the requisite conditions of the nonlocal theory. We demonstrate this workflow for a range of applications, including reproduction of manufactured nonlocal kernels; numerical homogenization of Darcy flow associated with a heterogeneous periodic microstructure; nonlocal approximation to high-order local transport phenomena; and approximation of globally supported fractional diffusion operators by truncated kernels.
The data-driven discrete exterior calculus (DDEC) structure provides a novel machine learning architecture for discovering structure-preserving models which govern data, allowing for example machine learning of reduced order models for complex continuum scale physical systems. In this work, we present a Greedy Fiedler Spectral (GFS) partitioning method to obtain a chain complex structure to support DDEC models, incorporating synthetic data obtained from high-fidelity solutions to partial differential equations. We provide justification for the effectiveness of the resulting chain complex and demonstrate its DDEC model trained for Darcy flow on a heterogeneous domain.
Second-order optimizers hold intriguing potential for deep learning, but suffer from increased cost and sensitivity to the non-convexity of the loss surface as compared to gradient-based approaches. We introduce a coordinate descent method to train deep neural networks for classification tasks that exploits global convexity of the cross-entropy loss in the weights of the linear layer. Our hybrid Newton/Gradient Descent (NGD) method is consistent with the interpretation of hidden layers as providing an adaptive basis and the linear layer as providing an optimal fit of the basis to data. By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to train the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training. The size of the Hessian in the second-order step scales only with the number weights in the linear layer and not the depth and width of the hidden layers; furthermore, the approach is applicable to arbitrary hidden layer architecture. Previous work applying this adaptive basis perspective to regression problems demonstrated significant improvements in accuracy at reduced training cost, and this work can be viewed as an extension of this approach to classification problems. We first prove that the resulting Hessian matrix is symmetric semi-definite, and that the Newton step realizes a global minimizer. By studying classification of manufactured two-dimensional point cloud data, we demonstrate both an improvement in validation error and a striking qualitative difference in the basis functions encoded in the hidden layer when trained using NGD. Application to image classification benchmarks for both dense and convolutional architectures reveals improved training accuracy, suggesting gains of second-order methods over gradient descent. A Tensorflow implementation of the algorithm is available at github.com/rgp62/.
In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞(ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.