Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.
Electrical current leakage paths in AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) are identified using conductive atomic force microscopy. Open-core threading dislocations are found to conduct current through insulating Al0.7Ga0.3N layers. A defect-sensitive H3PO4 etch reveals these open-core threading dislocations as 1-2mu;m wide hexagonal etch pits visible with optical microscopy. Additionally, closed-core threading dislocations are decorated with smaller and more numerous nanometer-scale pits, which are quantifiable by atomic-force microscopy. The performances of UV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templates are found to have a strong correlation to the density of these electrically conductive open-core dislocations, while the total threading dislocation densities of the UV-LEDs remain relatively unchanged.
We, the Postdoc Professional Development Program (PD2P) leadership team, wrote these postdoc guidelines to be a starting point for communication between new postdocs, their staff mentors, and their managers. These guidelines detail expectations and responsibilities of the three parties, as well as list relevant contacts. The purpose of the Postdoc Program is to bring in talented, creative people who enrich Sandia's environment by performing innovative R&D, as well as by stimulating intellectual curiosity and learning. Postdocs are temporary employees who come to Sandia for career development and advancement reasons. In general, the postdoc term is 1 year, renewable up to five times for a total of six years. However, center practices may vary; check with your manager. At term, a postdoc may apply for a staff position at Sandia or choose to move to university, industry or another lab. It is our vision that those who leave become long-term collaborators and advocates whose relationships with Sandia have a positive effect upon our national constituency.