There is a need to understand materials exposed to overlapping extreme environments such as high temperature, radiation, or mechanical stress. When these stressors are combined there may be synergistic effects that enable unique microstructural evolution mechanisms to activate. Understanding of these mechanisms is necessary for the input and refinement of predictive models and critical for engineering of next generation materials. The basic physics and underlying mechanisms require advanced tools to be investigated. The in situ ion irradiation transmission electron microscope (I³TEM) is designed to explore these principles. To quantitatively probe the complex dynamic interactions in materials, careful preparation of samples and consideration of experimental design is required. Particular handling or preparation of samples can easily introduce damage or features that obfuscate the measurements. There is no one correct way to prepare a sample; however, many mistakes can be made. The most common errors and things to consider are highlighted within. The I³TEM has many adjustable variables and a large potential experimental space, therefore it is best to design experiments with a specific scientific question or questions in mind. Experiments have been performed on large number of sample geometries, material classes, and with many irradiation conditions. The following are a subset of examples that demonstrate unique in situ capabilities utilizing the I3TEM. Au nanoparticles prepared by drop casting have been used to investigate the effects of single ion strikes. Au thin films have been used in studies on the effects of multibeam irradiation on microstructure evolution. Zr films have been exposed to irradiation and mechanical tension to examine creep. Ag nanopillars were subjected to simultaneous high temperature, mechanical compression, and ion irradiation to study irradiation induced creep as well. These results impact fields including: structural materials, nuclear energy, energy storage, catalysis, and microelectronics in space environments.
High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.
Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.
Hattar, Khalid M.; Mcgieson, Isak; Bird, Victoriea L.; Barr, Christopher M.; Reed, Bryan W.; Mckeown, Joseph T.; Yi, Feng; Santala, M.K.
The crystallization of an amorphous Ag–In–Sb–Te (AIST) phase change material (PCM) is studied using multiple in situ imaging techniques to directly quantify crystal growth rates over a broad range of temperatures. The measurable growth rates span from ≈ 10–9 to ≈ 20 m/s. Recent results using dynamic transmission electron microscopy (TEM), a photoemission TEM technique, and TEM with sub-framed imaging are reported here and placed into the context of previous growth rate measurements on AIST. Dynamic TEM experiments show a maximum observed crystal growth rate for as-deposited films to be > 20 m/s. It is shown that crystal growth above the glass transition can be imaged in a TEM through use of subframing and a high-frame-rate direct electron detection camera. Challenges associated with the determination of temperature during in situ TEM experiments are described. Preliminary nanocalorimetry results demonstrate the feasibility of collecting thermodynamic data for crystallization of PCMs with simultaneous TEM imaging. Graphical abstract: [Figure not available: see fulltext.]
Understanding of structural and morphological evolution in nanomaterials is critical in tailoring their functionality for applications such as energy conversion and storage. Here, we examine irradiation effects on the morphology and structure of amorphous TiO2 nanotubes in comparison with their crystalline counterpart, anatase TiO2 nanotubes, using high-resolution transmission electron microscopy (TEM), in situ ion irradiation TEM, and molecular dynamics (MD) simulations. Anatase TiO2 nanotubes exhibit morphological and structural stability under irradiation due to their high concentration of grain boundaries and surfaces as defect sinks. On the other hand, amorphous TiO2 nanotubes undergo irradiation-induced crystallization, with some tubes remaining only partially crystallized. The partially crystalline tubes bend due to internal stresses associated with densification during crystallization as suggested by MD calculations. These results present a novel irradiation-based pathway for potentially tuning structure and morphology of energy storage materials. Graphical abstract: [Figure not available: see fulltext.]
This article evaluates the data retention characteristics of irradiated multilevel-cell (MLC) 3-D NAND flash memories. We irradiated the memory chips by a Co-60 gamma-ray source for up to 50 krad(Si) and then wrote a random data pattern on the irradiated chips to find their retention characteristics. The experimental results show that the data retention property of the irradiated chips is significantly degraded when compared to the un-irradiated ones. We evaluated two independent strategies to improve the data retention characteristics of the irradiated chips. The first method involves high-temperature annealing of the irradiated chips, while the second method suggests preprogramming the memory modules before deploying them into radiation-prone environments.
This article analyzes the total ionizing dose (TID) effects on noise characteristics of commercial multi-level-cell (MLC) 3-D NAND memory technology during the read operation. The chips were exposed to a Co-60 gamma-ray source for up to 100 krad(Si) of TID. We find that the number of noisy cells in the irradiated chip increases with TID. Bit-flip noise was more dominant for cells in an erased state during irradiation compared to programmed cells.
In this article, we provide an analytical model for the total ionizing dose (TID) effects on the bit error statistics of commercial flash memory chips. We have validated the model with experimental data collected by irradiating several commercial NAND flash memory chips from different technology nodes. We find that our analytical model can project bit errors at higher TID values [20 krad (Si)] from measured data at lower TID values [<1 krad (Si)]. Based on our model and the measured data, we have formulated basic design rules for using a commercial flash memory chip as a dosimeter. We discuss the impact of NAND chip-to-chip variability, noise margin, and the intrinsic errors on the dosimeter design using detailed experimentation.