Publications

Results 201–353 of 353

Search results

Jump to search filters

Performance Monitoring using Pecos (V.0.1)

Klise, Katherine A.; Stein, Joshua

Advances in sensor technology have rapidly increased our ability to monitor natural and human-made physical systems. In many cases, it is critical to process the resulting large volumes of data on a regular schedule and alert system operators when the system has changed. Automated quality control and performance monitoring can allow system operators to quickly detect performance issues. Pecos is an open source python package designed to address this need. Pecos includes built-in functionality to monitor performance of time series data. The software can be used to automatically run a series of quality control tests and generate customized reports which include performance metrics, test results, and graphics. The software was developed specifically for solar photovoltaic system monitoring, and is intended to be used by industry and the research community. The software can easily be customized for other applications. The following Pecos documentation includes installation instructions and examples, description of software features, and software license. It is assumed that the reader is familiar with the Python Programming Language. References are included for additional background on software components.

More Details

Low-cost solar variability sensors for ubiquitous deployment

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Lave, Matt; Reno, Matthew J.; Stein, Joshua; Smith, Ryan

To address the lack of knowledge of local solar variability, we have developed, deployed, and demonstrated the value of data collected from a low-cost solar variability sensor. While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we list variability sensor requirements, describe testing of various low-cost sensor components, present a validation of an alpha prototype, and show how the variability sensor collected data can be used for grid integration studies. The variability sensor will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic installations and thus will encourage greater penetrations of solar energy.

More Details

Low-cost solar variability sensors for ubiquitous deployment

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Lave, Matt; Reno, Matthew J.; Stein, Joshua; Smith, Ryan

To address the lack of knowledge of local solar variability, we have developed, deployed, and demonstrated the value of data collected from a low-cost solar variability sensor. While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we list variability sensor requirements, describe testing of various low-cost sensor components, present a validation of an alpha prototype, and show how the variability sensor collected data can be used for grid integration studies. The variability sensor will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic installations and thus will encourage greater penetrations of solar energy.

More Details

In-situ module-level I-V tracers for novel PV monitoring

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Quiroz, Jimmy E.; Stein, Joshua; Carmignani, Craig K.; Gillispie, Kellen

The current state of PV module monitoring is in need of improvements to better detect, diagnose, and locate abnormal module conditions. Detection of common abnormalities is difficult with current methods. The value of optimal system operation is a quantifiable benefit, and cost-effective monitoring systems will continue to evolve for this reason. Sandia National Laboratories performed a practicality and monitoring investigation on a testbed of 15 in-situ module-level I-V curve tracers. Shading and series resistance tests were performed and examples of using I-V curve interpretation and the Loss Factors Model parameters for detection of each is presented.

More Details

Improved PV performance modelling by combining the PV-LIB toolbox with the Loss Factors Model (LFM)

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Sutterlueti, Juergen; Ransome, Steve; Stein, Joshua; Scholz, Joerg

PV project investments need comprehensive plant monitoring data in order to validate performance and to fulfil expectations. Algorithms from PV-LIB and Loss Factors Model are being combined to quantify their prediction improvements at Gantner Instruments' Outdoor Test facility at Tempe AZ on multiple Tier 1 technologies. The validation of measured vs. predicted long term performance will be demonstrated to quantify the potential of IV scan monitoring. This will give recommendations on what parameters and methods should be used by investors, test labs, and module producers.

More Details

PVLIB Python 2015

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Holmgren, William F.; Andrews, Robert W.; Lorenzo, Antonio T.; Stein, Joshua

We describe improvements to the open source PVLIB-Python modeling package. PVLIB-Python provides most of the functionality of its parent PVLIB-MATLAB package and now follows standard Python design patterns and conventions, has improved unit test coverage, and is installable. PVLIBPython is hosted on GitHub.com and co-developed by GitHub contributors. We also describe a roadmap for the future of the PVLIB-Python package.

More Details

FY15 Final Annual Report for the Regional Test Centers

Stein, Joshua

Sandia National Laboratories (Sandia) manages four of the five PV Regional Test Centers (RTCs). This report reviews accomplishments made by the four Sandia-managed RTCs during FY2015 (October 1, 2014 to September 30, 2015) as well as some programmatic improvements that apply to all five sites. The report is structured by Site first then by Partner within each site followed by the Current and Potential Partner summary table, the New Business Process, and finally the Plan for FY16 and beyond. Since no official SOPO was ever agreed to for FY15, this report does not include reporting on specific milestones and go/no-go decisions.

More Details

Final Technical Report: Increasing Prediction Accuracy

King, Bruce H.; Hansen, Clifford; Stein, Joshua

PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

More Details

Final Technical Report: Characterizing Emerging Technologies

King, Bruce H.; Hansen, Clifford; Stein, Joshua; Riley, Daniel; Gonzalez, Sigifredo

The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

More Details

Photovoltaic Microinverter Testbed for Multiple Device Interoperability

Quiroz, Jimmy E.; Gonzalez, Sigifredo; King, Bruce H.; Riley, Daniel; Johnson, Jay; Stein, Joshua

IEEE Standard 1547-2003 conformance of several interconnected microinverters was performed by Sandia National Laboratories (SNL) to determine if there were emergent adverse behaviors of co-located aggregated distributed energy resources. Experiments demonstrated the certification tests could be expanded for multi-manufacturer microinverter interoperability. Evaluations determined the microinverters' response to abnormal conditions in voltage and frequency, interruption in grid service, and cumulative power quality. No issues were identified to be caused by the interconnection of multiple devices.

More Details

Introduction to the open source PV LIB for python Photovoltaic system modelling package

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Andrews, Robert W.; Stein, Joshua; Hansen, Clifford; Riley, Daniel

The proper modeling of Photovoltaic(PV) systems is critical for their financing, design, and operation. PV LIB provides a flexible toolbox to perform advanced data analysis and research into the performance modeling and operations of PV assets, and this paper presents the extension of the PV LIB toolbox into the python programming language. PV LIB provides a common repository for the release of published modeling algorithms, and thus can also help to improve the quality and frequency of model validation and inter comparison studies. Overall, the goal of PV LIB is to accelerate the pace of innovation in the PV sector.

More Details

Sandia Inverter Performance Test Protocol efficiency weighting alternatives

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Newmiller, Jeff; Erdman, William; Stein, Joshua; Gonzalez, Sigifredo

The Sandia Inverter Performance Test Protocol defined two possible weighted-average efficiency values for use in comparing inverter performance, of which one definition was selected by the California Energy Commission for use in their Buydown incentive program leading to widespread use in the photovoltaic inverter market. This paper discusses the derivation of the efficiency weights originally proposed, and investigates the potential for defining new weights in light of increased array-to-inverter (DC-to-AC) system rating ratios in modern PV systems.

More Details

Measuring PV system series resistance without full IV curves

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Stein, Joshua; McCaslin, Shawn; Hansen, Clifford; Boyson, William E.; Robinson, Charles D.

We present a method for measuring the series resistance of the PV module, string, or array that does not require measuring a full IV curve or meteorological data. Our method relies only on measurements of open circuit voltage and maximum power voltage and current, which can be readily obtained using standard PV monitoring equipment; measured short circuit current is not required. We validate the technique by adding fixed resistors to a PV circuit and demonstrating that the method can predict the added resistance. Relative prediction accuracy appears highest for smaller changes in resistance, with a systematic underestimation at larger resistances. Series resistance is shown to vary with irradiance levels with random errors below 1.5% standard deviation.

More Details

Sampling and Filtering in Photovoltaic System Performance Monitoring

Driesse, Anton; Stein, Joshua; Riley, Daniel; Carmignani, Craig K.

The performance of photovoltaic systems must be monitored accurately to ensure profitable long-term operation. The most important signals to be measured—irradiance and temperature, as well as power, current and voltage on both DC and AC sides of the system—contain rapid fluctuations that are not observable by typical monitoring systems. Nevertheless these fluctuations can affect the accuracy of the data that are stored. This report closely examines the main signals in one operating PV system, which were recorded at 2000 samples per second. It analyzes the characteristics and causes of the rapid fluctuations that are found, such as line-frequency harmonics, perturbations from anti-islanding detection, MPPT searching action and others. The operation of PV monitoring systems is then simulated using a wide range of sampling intervals, archive intervals and filtering options to assess how these factors influence data accuracy. Finally several potential sources of error are discussed with real-world examples.

More Details

Simulating Solar Power Plant Variability: A Review of Current Methods

Ellis, Abraham; Stein, Joshua

It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

More Details

Using cloud classification to model solar variability

42nd ASES National Solar Conference 2013, SOLAR 2013, Including 42nd ASES Annual Conference and 38th National Passive Solar Conference

Reno, Matthew J.; Stein, Joshua

Imagery from GOES satellites is analyzed to determine how solar variability is related to the NOAA classification of cloud type. Without using a model to convert satellite imagery to average insolation on the ground, this paper investigates using cloud categories to directly model the expected statistical variability of ground irradiance. Hourly cloud classified satellite images are compared to multiple years of ground measured irradiance at two locations to determine if measured irradiance, ramp rates, and variability index are correlated with cloud category. Novel results are presented for ramp rates grouped by the cloud category during the time period. This correlation between satellite cloud classification and solar variability could be used to model the solar variability for a given location and time and could be used to determine the variability of a location based on the prevalence of each cloud category.

More Details

Testing and characterization of PV modules with integrated microinverters

Conference Record of the IEEE Photovoltaic Specialists Conference

Riley, Daniel; Stein, Joshua; Kratochvil, Jay A.

Photovoltaic (PV) modules with attached microinverters are becoming increasingly popular in PV systems, especially in the residential system market, as such systems offer several benefits not found in PV systems utilizing central inverters. PV modules with fully integrated microinverters are emerging to fill a similar market space. These 'AC modules' absorb solar energy and produce AC energy without allowing access to the intermediate DC bus. Existing test procedures and performance models designed for separate DC and AC components are unusable when the inverter is integrated into the module. Sandia National Laboratories is developing a new set of test procedures and performance model designed for AC modules. © 2013 IEEE.

More Details

Improvement and validation of a transient model to predict photovoltaic module temperature

World Renewable Energy Forum Wref 2012 Including World Renewable Energy Congress Xii and Colorado Renewable Energy Society Cres Annual Conferen

Luketa-Hanlin, Amanda; Stein, Joshua

Module temperature is modeled using a transient heat-flow model. Module temperature predicted in this fashion is important in the calculation of cell temperature, a vital input in performance modeling. Parameters important to the model are tested for sensitivity, and optimized to a single day of measured module temperature using simultaneous non-linear least squares regression. These optimized parameters are then tested for accuracy using a year's worth of data for one location. The results obtained from this analysis are compared with modeled data from a different site, as well as to results obtained using a steadystate model. We find that the transient model best captures the variability in module temperature, and that the transient model works best when calibrated for a specific location.

More Details

The variability index: A new and novel metric for quantifying irradiance and pv output variability

World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conferen

Stein, Joshua; Hansen, Clifford; Reno, Matthew J.

Variability of photovoltaic (PV) power output is a potential concern to utilities because it can lead to voltage changes on the distribution system and have other adverse impacts on power quality unless additional equipment is added or operational practices are changed to mitigate these effects. This paper develops and evaluates a simple yet novel approach for quantifying irradiance variability over various timescales. The approach involves comparison between measured irradiance and a reference, clear sky irradiance, determined from a model. Conceptually, the "Variability Index" is the ratio of the "length" of the measured irradiance plotted against time divided by the "length" of the reference clear sky irradiance signal. Adjustments are proposed that correct for different measurement intervals. By evaluating the variability index at several sites, we show how annual and monthly distributions of this metric can help to classify sites and periods of time when variability is significant. Copyright © (2012) by American Solar Energy Society.

More Details

Improvement and validation of a transient model to predict photovoltaic module temperature

World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conferen

Luketa-Hanlin, Amanda; Stein, Joshua

Module temperature is modeled using a transient heat-flow model. Module temperature predicted in this fashion is important in the calculation of cell temperature, a vital input in performance modeling. Parameters important to the model are tested for sensitivity, and optimized to a single day of measured module temperature using simultaneous non-linear least squares regression. These optimized parameters are then tested for accuracy using a year's worth of data for one location. The results obtained from this analysis are compared with modeled data from a different site, as well as to results obtained using a steadystate model. We find that the transient model best captures the variability in module temperature, and that the transient model works best when calibrated for a specific location.

More Details

PV output variability modeling using satellite imagery and neural networks

Conference Record of the IEEE Photovoltaic Specialists Conference

Reno, Matthew J.; Stein, Joshua

High frequency irradiance variability measured on the ground is caused by the formation, dissipation, and passage of clouds in the sky. Variability and ramp rates of PV systems are increasingly important to understand and model for grid stability as PV penetration levels rise. Using satellite imagery to identify cloud types and patterns can predict irradiance variability in areas lacking sensors. With satellite imagery covering the entire U.S., this allows for more accurate integration planning and power flow modelling over wide areas. Satellite imagery from southern Nevada was analyzed at 15 minute intervals over a year. Methods for image stabilization, cloud detection, and textural classification of clouds were developed and tested. High Performance Computing parallel processing algorithms were also investigated and tested. Artificial Neural Networks using imagery as inputs were trained on ground-based measurements of irradiance to model the variability and were tested to show some promise as a means for predicting irradiance variability. Artificial Neural Networks, cloud texture analysis, and cloud type categorization can be used to model the irradiance and variability for a location at a one minute resolution without needing many ground based irradiance sensors. © 2012 IEEE.

More Details

PV output variability modeling using satellite imagery and neural networks

Conference Record of the IEEE Photovoltaic Specialists Conference

Reno, Matthew J.; Stein, Joshua

High frequency irradiance variability measured on the ground is caused by the formation, dissipation, and passage of clouds in the sky. Variability and ramp rates of PV systems are increasingly important to understand and model for grid stability as PV penetration levels rise. Using satellite imagery to identify cloud types and patterns can predict irradiance variability in areas lacking sensors. With satellite imagery covering the entire U.S., this allows for more accurate integration planning and power flow modelling over wide areas. Satellite imagery from southern Nevada was analyzed at 15 minute intervals over a year. Methods for image stabilization, cloud detection, and textural classification of clouds were developed and tested. High Performance Computing parallel processing algorithms were also investigated and tested. Artificial Neural Networks using imagery as inputs were trained on ground-based measurements of irradiance to model the variability and were tested to show some promise as a means for predicting irradiance variability. Artificial Neural Networks, cloud texture analysis, and cloud type categorization can be used to model the irradiance and variability for a location at a one minute resolution without needing many ground based irradiance sensors. © 2012 IEEE.

More Details

Analyzing and simulating the reduction in PV powerplant variability due to geographic smoothing in Ota City, Japan and Alamosa, CO

Conference Record of the IEEE Photovoltaic Specialists Conference

Lave, Matt; Stein, Joshua; Ellis, Abraham

Ota City, Japan and Alamosa, Colorado present contrasting cases of a small rooftop distributed PV plant versus a large central PV plant. We examine the effect of geographic smoothing on the power output of each plant. 1-second relative maximum ramp rates are found to be reduced 6-10 times for the total plant output versus a single point sensor, though smaller reductions are seen at longer timescales. The relative variability is found to decay exponentially at all timescales as additional houses or inverters are aggregated. The rate of decay depends on both the geographic diversity within the plant and the meteorological conditions (such as cloud speed) on a given day. The Wavelet Variability Model (WVM) takes into account these geographic smoothing effects to produce simulated PV powerplant output by using a point sensor as input. The WVM is tested against Ota City and Alamosa, and the WVM simulation closely matches the distribution of ramp rates of actual power output. © 2012 IEEE.

More Details

The Comparison of Three Photovoltaic System Designs Using the Photovoltaic Reliability and Performance Model (PV-RPM)

Stein, Joshua; Granata, Jennifer E.

Most photovoltaic (PV) performance models currently available are designed to use irradiance and weather data and predict PV system output using a module or array performance model and an inverter model. While these models can give accurate results, they do so for an idealized system. That is, a system that does not experience component failures or outages. We have developed the Photovoltaic Reliability and Performance Model (PV-RPM) to more accurately model these PV systems by including a reliability component that simulates failures and repairs of the components of the system, as well as allow for the disruption of the system by external events such as lightning or grid disturbances. In addition, a financial component has also been included to help assess the profitability of a PV system. In this report we provide some example analyses of three different PV system designs using the PV-RPM.

More Details

Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis

Reno, Matthew J.; Stein, Joshua

Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

More Details

Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system

Kuszmaul, Scott S.; Ellis, Abraham; Stein, Joshua

Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

More Details

Parameter uncertainty in the Sandia array performance model for flat-plate crystaline silicon modules

Conference Record of the IEEE Photovoltaic Specialists Conference

Hansen, Clifford; Stein, Joshua; Miller, Steven; Boyson, William; Kratochvil, Jay A.; King, David L.

The Sandia Array Performance Model (SAPM) [1] describes the power performance of photovoltaic (PV) modules under variable irradiance and temperature conditions. Model parameters are estimated by regressions involving measured module voltage and current, module and air temperature, and solar irradiance. Measurements are made under test conditions chosen to isolate subsets of parameters and which improve the quality of the regression estimates. Uncertainty in model parameters results from uncertainty in each measurement as well as from the number of measurements. Uncertainty in model parameters can be propagated through the model to determine its effect on model output. In this paper we summarize the process for estimating uncertainty in model parameters for flat-plate, crystalline silicon (cSi) modules from measurements, present example results, and illustrate the effect of parameter uncertainty on model output. Finally, we comment on how analysis of parameter uncertainty can inform model developers about the presence and impacts of model uncertainty. © 2011 IEEE.

More Details

Ota City: Characterizing Output Variability from 553 Homes with Residential PV Systems on a Distribution Feeder

Ellis, Abraham; Lave, Matt; Stein, Joshua; Hansen, Clifford

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

More Details

Simulation of one-minute power output from utility-scale photovoltaic generation systems

Stein, Joshua; Ellis, Abraham

We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

More Details

PV performance modeling workshop summary report

Stein, Joshua

During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

More Details

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016

Schoenwald, David A.; Richardson, Bryan T.; Riehm, Andrew C.; Wolfenbarger, Paul; Adams, Brian M.; Reno, Matthew J.; Hansen, Clifford; Oldfield, Ron; Stamp, Jason E.; Stein, Joshua; Hoekstra, Robert J.; Nelson, Jeffrey; Munoz-Ramos, Karina; Mclendon, William; Russo, Thomas V.; Phillips, Laurence R.

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

More Details

Evaluation of PV performance models and their impact on project risk

Stein, Joshua; Hansen, Clifford

Photovoltaic systems are often priced in $/W{sub p}, where Wp refers to the DC power rating of the modules at Standard Test Conditions (1000 W/m{sup 2}, 25 C cell temperature) and $ refers to the installed cost of the system. However, the true value of the system is in the energy it will produce in kWhs, not the power rating. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, the annual energy yield (kWh/kW{sup p}) will vary among module technologies because of differences in response to low-light levels and temperature. Understanding energy yield is a key part of understanding system value. System performance models are used during project development to estimate the expected output of PV systems for a given design and location. Performance modeling is normally done by the system designer/system integrator. Often, an independent engineer will also model system output during a due diligence review of a project. A variety of system performance models are available. The most commonly used modeling tool for project development and due diligence in the United States is probably PVsyst, while those seeking a quick answer to expected energy production may use PVWatts. In this paper, we examine the variation in predicted energy output among modeling tools and users and compare that to measured output.

More Details

PV output variability modeling using satellite imagery

Reno, Matthew J.; Stein, Joshua; Ellis, Abraham

High frequency irradiance variability measured on the ground is caused by the formation, dissipation, and passage of clouds in the sky. If we can identify and associate different cloud types/patterns from satellite imagery, we may be able to predict irradiance variability in areas lacking sensors. With satellite imagery covering the entire U.S., this allows for more accurate integration planning and power flow modeling over wide areas. Satellite imagery from southern Nevada was analyzed at 15 minute intervals over a year. Methods for image stabilization, cloud detection, and textural classification of clouds were developed and tested. High Performance Computing parallel processing algorithms were also investigated and tested. Artificial Neural Networks using imagery as inputs were trained on ground-based measurements of irradiance to model the variability and were tested to show some promise as a means for predicting irradiance variability.

More Details

Modeling needs for very large systems

Stein, Joshua

Most system performance models assume a point measurement for irradiance and that, except for the impact of shading from nearby obstacles, incident irradiance is uniform across the array. Module temperature is also assumed to be uniform across the array. For small arrays and hourly-averaged simulations, this may be a reasonable assumption. Stein is conducting research to characterize variability in large systems and to develop models that can better accommodate large system factors. In large, multi-MW arrays, passing clouds may block sunlight from a portion of the array but never affect another portion. Figure 22 shows that two irradiance measurements at opposite ends of a multi-MW PV plant appear to have similar irradiance (left), but in fact the irradiance is not always the same (right). Module temperature may also vary across the array, with modules on the edges being cooler because they have greater wind exposure. Large arrays will also have long wire runs and will be subject to associated losses. Soiling patterns may also vary, with modules closer to the source of soiling, such as an agricultural field, receiving more dust load. One of the primary concerns associated with this effort is how to work with integrators to gain access to better and more comprehensive data for model development and validation.

More Details

Results of model intercomparison : predicted vs. measured system performance

Stein, Joshua

This is a blind modeling study to illustrate the variability expected between PV performance model results. Objectives are to answer: (1) What is the modeling uncertainty; (2) Do certain models do better than others; (3) How can performance modeling be improved; and (4) What are the sources of uncertainty? Some preliminary conclusions are: (1) Large variation seen in model results; (2) Variation not entirely consistent across systems; (3) Uncertainty in assigning derates; (4) Discomfort when components are not included in database - Is there comfort when the components are in the database?; and (5) Residual analysis will help to uncover additional patterns in the models.

More Details

Statistical criteria for characterizing irradiance time series

Hansen, Clifford; Stein, Joshua; Ellis, Abraham

We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

More Details

A reliability and availability sensitivity study of a large photovoltaic system

Collins, Elmer W.; Mundt, Michael J.; Stein, Joshua; Sorensen, Neil R.; Granata, Jennifer E.; Quintana, Michael A.

A reliability and availability model has been developed for a portion of the 4.6 megawatt (MWdc) photovoltaic system operated by Tucson Electric Power (TEP) at Springerville, Arizona using a commercially available software tool, GoldSim{trademark}. This reliability model has been populated with life distributions and repair distributions derived from data accumulated during five years of operation of this system. This reliability and availability model was incorporated into another model that simulated daily and seasonal solar irradiance and photovoltaic module performance. The resulting combined model allows prediction of kilowatt hour (kWh) energy output of the system based on availability of components of the system, solar irradiance, and module and inverter performance. This model was then used to study the sensitivity of energy output as a function of photovoltaic (PV) module degradation at different rates and the effect of location (solar irradiance). Plots of cumulative energy output versus time for a 30 year period are provided for each of these cases.

More Details

Methods of integrating a high penetration photovoltaic power plant into a micro grid

Stein, Joshua

The island of Lanai is currently one of the highest penetration PV micro grids in the world, with the 1.2 MWAC La Ola Solar Farm operating on a grid with a peak net load of 4.7 MW. This facility interconnects to one of Lanai's three 12.47 kV distribution circuits. An initial interconnection requirements study (IRS) determined that several control and performance features are necessary to ensure safe and reliable operation of the island grid. These include power curtailment, power factor control, over/under voltage and frequency ride through, and power ramp rate limiting. While deemed necessary for stable grid operation, many of these features contradict the current IEEE 1547 interconnection requirements governing distributed generators. These controls have been successfully implemented, tested, and operated since January 2009. Currently, the system is producing power in a curtailed mode according to the requirements of a power purchase agreement (PPA).

More Details

Validation of PV performance models using satellite-based irradiance measurements : a case study

Stein, Joshua

Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

More Details

Performance model assessment for multi-junction concentrating photovoltaic systems

Riley, Daniel; Stein, Joshua

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

More Details

Performance model assessment for multi-junction concentrating photovoltaic systems

Riley, Daniel; Stein, Joshua

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

More Details

Models used to assess the performance of photovoltaic systems

Stein, Joshua

This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

More Details

Deep borehole disposal of high-level radioactive waste

Brady, Patrick V.; Arnold, Bill W.; Freeze, Geoffrey; Swift, Peter; Bauer, Stephen J.; Rechard, Robert P.; Stein, Joshua

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

More Details

Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report

Webb, Stephen W.; Phelan, James M.; Hadgu, Teklu; Stein, Joshua; Sallaberry, Cedric J.

Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

More Details

Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model

Stein, Joshua

The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

More Details

Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report

Webb, Stephen W.; Stein, Joshua

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

More Details

Conversion of the West Hackberry geological site characterization report to a three-dimensional model

Rautman, Christopher A.; Stein, Joshua

The West Hackberry salt dome, in southwestern Louisiana, is one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the West Hackberry site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary layers, mapped faults, and a portion of the oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the West Hackberry site that can be used in support of future work.

More Details

Conversion of the Bayou Choctaw geological site characterization report to a three-dimensional model

Rautman, Christopher A.; Stein, Joshua

The geologic model implicit in the original site characterization report for the Bayou Choctaw Strategic Petroleum Reserve Site near Baton Rouge, Louisiana, has been converted to a numerical, computer-based three-dimensional model. The original site characterization model was successfully converted with minimal modifications and use of new information. The geometries of the salt diapir, selected adjacent sedimentary horizons, and a number of faults have been modeled. Models of a partial set of the several storage caverns that have been solution-mined within the salt mass are also included. Collectively, the converted model appears to be a relatively realistic representation of the geology of the Bayou Choctaw site as known from existing data. A small number of geometric inconsistencies and other problems inherent in 2-D vs. 3-D modeling have been noted. Most of the major inconsistencies involve faults inferred from drill hole data only. Modem computer software allows visualization of the resulting site model and its component submodels with a degree of detail and flexibility that was not possible with conventional, two-dimensional and paper-based geologic maps and cross sections. The enhanced visualizations may be of particular value in conveying geologic concepts involved in the Bayou Choctaw Strategic Petroleum Reserve site to a lay audience. A Microsoft WindowsTM PC-based viewer and user-manipulable model files illustrating selected features of the converted model are included in this report.

More Details

Observations and models of lateral hydrothermal circulation on a young ridge flank: Numerical evaluation of thermal and chemical constraints

Geochemistry, Geophysics, Geosystems

Stein, Joshua

[1] We used a two-dimensional coupled heat and fluid flow model to investigate large-scale, lateral heat and fluid transport on the eastern flank of the Juan de Fuca Ridge. Cool seawater in the natural system is inferred to enter basement where it is exposed close to the spreading center and flow laterally beneath thick sediments, causing seafloor heat flow to be depressed relative to that input at the base of the plate. The flow rate, and thus the properties of permeable basement (the flow layer), controls the efficiency of lateral heat transport, as quantified through numerical modeling. We simulated forced flow in this layer by pumping water through at a fixed rate and quantified relations between flow rate, thickness of the permeable basement, and the extent of suppression of seafloor heat flow. Free flow simulations, in which fluid flow was not forced, match heat flow constraints if nonhydrostatic initial conditions are used and flow layer permeabilities are set to the high end of observed values (10-11 to 10-9 m2). To match seafloor heat flow observations, the models required lateral specific discharge of 1.2 to 40 m/yr for flow layer thicknesses of 600 to 100 m, respectively. The models also replicate differences in fluid pressures in basement, and the local distribution of pressures above and below hydrostatic. Estimated lateral flow rates are 10× to 1000× greater than estimates based on radiocarbon ages of basement pore waters. Estimated lateral flow rates based on thermal and chemical constraints can be reconciled if diffusion from discrete flow zones into less permeable stagnant zones in the crust is considered. © 2003 by the American Geophysical Union.

More Details

Conversion of the Big Hill geological site characterization report to a three-dimensional model

Stein, Joshua; Rautman, Christopher A.

The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

More Details

Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites

Rautman, Christopher A.; Stein, Joshua

Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

More Details
Results 201–353 of 353
Results 201–353 of 353