Interaction of Ammonium Sulfide with the Semiconductor Surfaces of AlSb and Related Alloys
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.
Proceedings of SPIE - The International Society for Optical Engineering
Here, we present a method of determining the background doping type in semiconductors using capacitance-voltage measurements on overetched double mesa p-i-n or n-i-p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p-n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p-i-n and n-i-p structures, determined that the material is residually doped p-type, which is well established by other sources. The method was then applied on a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.
IEEE Transactions on Antennas and Propagation
The Lorentz-like effective medium resonance (LEMR) exhibited by the longitudinal effective permittivity of semiconductor hyperbolic metamaterials (SHMs) has been known for some time. However, direct observation of this resonance proved to be difficult. Herein, we experimentally demonstrate its existence by strongly coupling SHMs to plasmonic metasurfaces. We consider four strong coupling implementations of SHMs that exhibit different LEMR absorption profiles (both in frequency and in strength) to validate our approach.
Applied Physics Letters
We present a method of determining the background doping type in semiconductors using capacitance-voltage measurements on overetched double mesa p-i-n or n-i-p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p-n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p-i-n and n-i-p structures, concluded that the material is residually doped p-type, which is well established by other sources. The method was then applied to a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.
Proceedings of SPIE - The International Society for Optical Engineering
An InGaAs/GaAsSb Type-II superlattice is explored as an absorber material for extended short-wave infrared detection. A 10.5 nm period was grown with an InGaAs/GaAsSb thickness ratio of 2 with a target In composition of 46% and target Sb composition of 62%. Cutoff wavelengths near 2.8 μm were achieved with responsivity beyond 3 μm. Demonstrated dark current densities were as low as 1.4 mA/cm2 at 295K and 13 μA/cm2 at 235K at -1V bias. A significant barrier to hole extraction was identified in the detector design that severely limited the external quantum efficiency (EQE) of the detectors. A redesign of the detector that removes that barrier could make InGaAs/GaAsSb very competitive with current commercial HgCdTe and extended InGaAs technology.
Proceedings of SPIE - The International Society for Optical Engineering
We present a method of determining the background doping type in semiconductors using capacitance-voltage measurements on overetched double mesa p-i-n or n-i-p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p-n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p-i-n and n-i-p structures, determined that the material is residually doped p-type, which is well established by other sources. The method was then applied on a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.
Abstract not provided.
Abstract not provided.
Characterization of vertical transport in semiconductor heterostructures is extremely difficult and often impractical. Measurements that are relatively straight forward in lateral transport using Hall methods, such as quantifying carrier density or mobility, have no analog in conventional vertical devices. Doppler charge velocimetry may provide an alternative approach to obtaining transport information. We hypothesize that we can drive vertical currents in structures like heterojunction bipolar transistors or nBn detectors, illuminate them with microwaves, and directly measure the carrier velocities through Doppler shifts imparted on the reflected microwave signal. Some challenges involve providing optical injection and working in the vertical geometry required to extract the desired information. While progress was made to this end, experiments have not yet proved successful. Implications for infrared material characterization are summarized at the end of this document.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letters
Strong coupling of an intersubband (ISB) electron transition in quantum wells to a subwavelength plasmonic nanoantenna can give rise to intriguing quantum phenomena, such as ISB polariton condensation, and enable practical devices including low threshold lasers. However, experimental observation of ISB polaritons in an isolated subwavelength system has not yet been reported. Here, we use scanning probe near-field microscopy and Fourier-transform infrared (FTIR) spectroscopy to detect formation of ISB polariton states in a single nanoantenna. We excite the nanoantenna by a broadband IR pulse and spectrally analyze evanescent fields on the nanoantenna surface. We observe the distinctive splitting of the nanoantenna resonance peak into two polariton modes and two ?-phase steps corresponding to each of the modes. We map ISB polariton dispersion using a set of nanoantennae of different sizes. This nano-FTIR spectroscopy approach opens doors for investigations of ISB polariton physics in the single subwavelength nanoantenna regime.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Scientific Reports
We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.
Scientific Reports
We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.
Abstract not provided.