Publications

Results 51–64 of 64

Search results

Jump to search filters

Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures

Scripta Materialia

Argibay, Nicolas A.; Curry, John C.; Babuska, Tomas F.; Lu, Ping L.; Chandross, M.; Furnish, Timothy A.; Kustas, Andrew K.

We demonstrate inverse Hall-Petch behavior (softening) in pure copper sliding contacts at cryogenic temperatures. By kinetically limiting grain growth, it is possible to generate a quasi-stable ultra-nanocrystalline surface layer with reduced strength. In situ electrical contact resistance measurements were used to determine grain size evolution at the interface, in agreement with reports of softening in highly nanotwinned copper. We also show evidence of a direct correlation between surface grain size and friction coefficient, validating a model linking friction in pure metals and the transition from dislocation mediated plasticity to grain boundary sliding.

More Details

Impact of Microstructure on MoS2 Oxidation and Friction

ACS Applied Materials and Interfaces

Curry, John C.; Luftman, Henry S.; Sidebottom, Mark A.; Strandwitz, Nicholas C.; Argibay, Nicolas A.; Krick, Brandon A.

This work demonstrates the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS2). We report on systematic investigations of oxidation and friction for two MoS2 films with distinctively different microstructures - amorphous and planar/highly-ordered - before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS2 films showed a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.

More Details
Results 51–64 of 64
Results 51–64 of 64