Publications

Results 76–100 of 183

Search results

Jump to search filters

Integrated Multiphysics Modeling of Environmentally Assisted Brittle Fracture

Rimsza, Jessica; Jones, Reese E.; Trageser, Jeremy; Hogancamp, Joshua; Foulk, James W.; Mitts, Cody; Mitchell, Chven A.M.; Taha, Mahmoud R.; Raby, Patience; Regueiro, Richard A.; Jadaan, Dhafer

Brittle materials, such as cement, compose major portions of built infrastructure and are vulnerable to degradation and fracture from chemo-mechanical effects. Currently, methods of modeling infrastructure do not account for the presence of a reactive environment, such as water, on the acceleration of failure. Here, we have developed methodologies and models of concrete and cement fracture that account for varying material properties, such as strength, shrinkage, and fracture toughness due to degradation or hydration. The models have been incorporated into peridynamics, non-local continuum mechanics methodology, that can model intersecting and branching brittle fracture that occurs in multicomponent brittle materials, such as concrete. Through development of new peridynamic capabilities, decalcification of cement and differential shrinkage in clay-cement composites have been evaluated, along with exemplar problems in nuclear waste cannisters and wellbores. We have developed methods to simulate multiphase phenomena in cement and cement-composite materials for energy and infrastructure applications.

More Details

Simulation of hardened cement degradation and estimation of uncertainty in predicted failure times with peridynamics

Construction and Building Materials

Jones, Reese E.; Rimsza, Jessica; Trageser, Jeremy; Hogancamp, Joshua

Modeling the degradation of cement-based infrastructure due to aqueous environmental conditions continues to be a challenge. In order to develop a capability to predict concrete infrastructure failure due to chemical degradation, we created a chemomechanical model of the effects of long-term water exposure on cement paste. The model couples the mechanical static equilibrium balance with reactive–diffusive transport and incorporates fracture and failure via peridynamics (a meshless simulation method). The model includes fundamental aspects of degradation of ordinary Portland cement (OPC) paste, including the observed softening, reduced toughness, and shrinkage of the cement paste, and increased reactivity and transport with water induced degradation. This version of the model focuses on the first stage of cement paste decalcification, the dissolution of portlandite. Given unknowns in the cement paste degradation process and the cost of uncertainty quantification (UQ), we adopt a minimally complex model in two dimensions (2D) in order to perform sensitivity analysis and UQ. We calibrate the model to existing experimental data using simulations of common tests such as flexure, compression and diffusion. Then we calculate the global sensitivity and uncertainty of predicted failure times based on variation of eleven unique and fundamental material properties. We observed particularly strong sensitivities to the diffusion coefficient, the reaction rate, and the shrinkage with degradation. Also, the predicted time of first fracture is highly correlated with the time to total failure in compression, which implies fracture can indicate impending degradation induced failure; however, the distributions of the two events overlap so the lead time may be minimal. Extension of the model to include the multiple reactions that describe complete degradation, viscous relaxation, post-peak load mechanisms, and to three dimensions to explore the interactions of complex fracture patterns evoked by more realistic geometry is straightforward and ongoing.

More Details

Prediction of Reactive Nitrous Acid Formation in Rare-Earth MOFs via ab initio Molecular Dynamics

Angewandte Chemie - International Edition

Vogel, Dayton J.; Rimsza, Jessica; Nenoff, Tina M.

Reactive gas formation in pores of metal–organic frameworks (MOFs) is a known mechanism of framework destruction; understanding those mechanisms for future durability design is key to next generation adsorbents. Herein, an extensive set of ab initio molecular dynamics (AIMD) simulations are used for the first time to predict competitive adsorption of mixed acid gases (NO2 and H2O) and the in-pore reaction mechanisms for a series of rare earth (RE)-DOBDC MOFs. Spontaneous formation of nitrous acid (HONO) is identified as a result of deprotonation of the MOF organic linker, DOBDC. The unique DOBDC coordination to the metal clusters allows for proton transfer from the linker to the NO2 without the presence of H2O and may be a factor in DOBDC MOF durability. This is a previously unreported mechanisms of HONO formation in MOFs. With the presented methodology, prediction of future gas interactions in new nanoporous materials can be achieved.

More Details

Stability Evaluation of Candidate Precursors for Chemical Vapor Deposition of Hafnium Diboride (HfB2)

ACS Omega

Rimsza, Jessica; Chackerian, Samuel C.B.; Boyle, Timothy; Hernandez-Sanchez, Bernadette A.

Alternative candidate precursors to [Hf(BH4)4] for low-temperature chemical vapor deposition of hafnium diboride (HfB2) films were identified using density functional theory simulations of molecules with the composition [Hf(BH4)2L2], where L = -OH, -OMe, -O-t-Bu, -NH2, -N═C═O, -N(Me)2, and -N(CH2)5NH2 (1-piperidin-2-amine referred to as Pip2A). Disassociation energies (ED), potential energy surface (PES) scans, ionization potentials, and electron affinities were all calculated to identify the strength of the Hf-L bond and the potential reactivity of the candidate precursor. Ultimately, the low ED (2.07 eV) of the BH4 ligand removal from the Hf atom in [Hf(BH4)4] was partially attributed to an intermediate state where [Hf(BH4)3(H)] and BH3 is formed. Of the candidate precursors investigated, three exhibited a similar mechanism, but only -Pip2A had a PES scan that indicated binding competitive with [Hf(BH4)4], making it a viable candidate for further study.

More Details

Influence of Polymorphs and Local Defect Structures on NMR Parameters of Graphite Fluorides

Journal of Physical Chemistry C

Alam, Todd M.; Rimsza, Jessica; Walder, Brennan J.

The role of local molecular structure on calculated 13C and 19F NMR chemical shifts for graphite fluoride materials was explored by using gauge-including projector augmented wave (GIPAW) computational methods for different periodic crystal polymorphs and density functional theory (DFT) gauge-including atomic orbital (GIAO) computational methods for individual graphite fluoride platelets, i.e., fluorinated graphene (FG). The impact of stacking sequences, d-spacing, and ring conformations on fully fluorinated graphite fluoride structures was investigated. A range of different defects including Stone-Wales, F and C vacancies, void formation, and F inversion were also evaluated using FG structures. These calculations show that distinct chemical shift signatures exist for many of these polymorphs and defects, therefore providing a basis for spectral assignment and development of models describing the mean local CF structure in disordered graphite fluoride materials.

More Details

Computational and Experimental Characterization of Intermediate Amorphous Phases in Geological Materials

Rimsza, Jessica; Sorte, Eric; Alam, Todd M.

In the subsurface, MgO engineered barriers are employed at the Waste Isolation Pilot Plant (WIPP), a transuranic waste repository near Carlsbad, NM. During service, the MgO will be exposed to high concentration brine environments and may form stable intermediate phases that can alter the barriers effectiveness. Here, MgO was aged in water and three different brine solutions. X-ray diffraction (XRD) and 1H nuclear magnetic resonance (NMR) analysis were performed to identify the formation of secondary phases. After aging, ~4% of the MgO was hydrated and fine-grained powders resulted in greater loss of crystallinity than hard granular grains. 1H magic angle spinning (MAS) NMR spectra resolved minor phases not visible in XRD, indicating that diverse 1H environments are present along with Mg(OH)2. Density functional theory (DFT) simulations for several proposed Mg-O-H, Mg-CI-O-H, and Na-O-H containing phases were performed to index peaks in the experimental 1H MAS NMR spectra. While proposed intermediate crystal structures exhibited overlapping 1H NMR peaks, Mg-O-H intermediates were attributed to the growth of the 1.0-0.0ppm peak while the Mg-CI-O-H structures contributed to the 2.5- 5.0ppm peak in the chloride containing brines. Overall, NMR analysis of aged MgO indicates the formation of a range of possible intermediate structures that cannot be resolved with XRD analysis alone.

More Details

Resiliency of Degraded Built Infrastructure

Rimsza, Jessica

Infrastructure resiliency depends on the ability of infrastructure systems to withstand, adapt, and recover from chronic and extreme stresses. In this white paper, we address the resiliency of infrastructure assets and discuss improving infrastructure stability through development of our understanding of cement and concrete degradation. The resiliency of infrastructure during extreme events relies on the condition, adaptability, and recoverability of built infrastructure (roads, bridges, dams), which serves as the backbone of existing infrastructure systems. Much of the built infrastructure in the US has consistently been rated D+ by the American Society of Civil Engineers (ASCE). Aged infrastructure introduces risk to the system, since unreliable infrastructure increases the likelihood of failures under chronic and extreme stress and are particularly concerning when extreme events occur. To understand and account for this added risk from poor infrastructure quality, more research is needed on (i) how the changing environment alters the aging of new and existing built infrastructure and (ii) how degradation causes unique failure mechanisms. The aging of built infrastructure is based on degradation of the structural materials, such as concrete and steel supports, which causes failure. Current work in cement/concrete degradation is based on (i) the development of high strength and degradation resistance concrete mixtures, (ii) methods of assessing the age and reliability of existing structures, and (3) modeling of structural stability and the microstructural evolution of concrete/cement from degradation mechanisms (sulfide attack, carbonation, decalcification). Sandia National Laboratories (SNL) has made several investments in studying the durability and degradation of cement based materials, including using SNL-developed codes and methodologies (peridynamics, PFLOTRAN) to focus on chemo-mechanical fracture of cement for energy applications. Additionally, a recent collaboration with the University of Colorado Boulder has included fracture of concrete gravity dams, scaling the existing work to applications in full sized infrastructure problems. Ultimately, SNL has the experience in degradation of cementitious materials to extend the current research portfolio and answer concerns about the resilience of aging built infrastructure.

More Details
Results 76–100 of 183
Results 76–100 of 183