Publications

Results 76–100 of 120

Search results

Jump to search filters

Enhanced densification under shock compression in porous silicon

Physical Review B - Condensed Matter and Materials Physics

Lane, James M.; Thompson, Aidan P.; Vogler, Tracy V.

Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

More Details

Hot spot and temperature analysis of shocked hydrocarbon polymer foams using molecular dynamics simulation

Computational Materials Science

Lane, James M.; Grest, Gary S.; Mattsson, Thomas M.

Hydrocarbon polymers, foams and nanocomposites are increasingly being subjected to extreme environments. Molecular scale modeling of these materials offers insight into failure mechanisms and complex response. Prior classical molecular dynamics (MD) simulations of the principal shock Hugoniot for two hydrocarbon polymers, polyethylene (PE) and poly (4-methyl-1-pentene) (PMP) have shown good agreement with density functional theory (DFT) calculations and experiments conducted at Sandia National Laboratories. We extended these results to include low-density polymer foams using nonequilibrium MD techniques and found good quantitative agreement with experiment. Here, we have measured the local temperature during void collapse to investigate the formation of hot spots and their relationship to polymer dissociation in foams.

More Details
Results 76–100 of 120
Results 76–100 of 120