Publications

Results 26–50 of 87

Search results

Jump to search filters

Time-encoded imaging of energetic radiation

Proceedings of SPIE - The International Society for Optical Engineering

Brennan, J.; Brubaker, E.; Gerling, Mark; Marleau, P.

Time-encoded imaging (TEI) is a new approach to directional detection of energetic radiation that produces images by inducing a time-dependent modulation of detected particles. TEI-based detectors use single-scatter events and have a low channel count, reducing complexity and cost while maintaining high efficiency with respect to other radiation imaging techniques such as double-scatter or coded aperture imaging. The scalability of TEI systems makes them a very promising detector class for weak source detection. Extension of the technique to high-resolution imaging is also under study. With a prototype time-encoding detector, we demonstrated detection of a neutron source at 60 m with neutron output equivalent to an IAEA significant quantity of WGPu. We have since designed and built a full-scale detector based on the time-encoding concept. We will present results from characterization of very large liquid scintillator cells, including pulse shape discrimination, as well as from studies of the detector system performance in weak source detection scenarios. © 2013 SPIE.

More Details

Bubble masks for time-encoded imaging of fast neutrons

Brubaker, E.; Brennan, J.; Marleau, P.; Steele, J.; Sweany, Melinda D.; Throckmorton, Daniel J.

Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

More Details

Bubble masks for time-encoded imaging of fast neutrons

IEEE Nuclear Science Symposium Conference Record

Brennan, J.; Brubaker, E.; Steele, J.; Sweany, Melinda D.; Throckmorton, Daniel J.

Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced - typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in predefined patterns, the oil is contained in tubing structures, and carefully introduced air gaps - bubbles - propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation for different tube sizes and cross-sectional shapes; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system. © 2013 IEEE.

More Details

Bubble masks for time-encoded imaging of fast neutrons

IEEE Nuclear Science Symposium Conference Record

Brubaker, E.; Brennan, J.; Steele, J.; Sweany, Melinda D.; Throckmorton, Daniel J.

Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced - typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in predefined patterns, the oil is contained in tubing structures, and carefully introduced air gaps - bubbles - propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation for different tube sizes and cross-sectional shapes; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system. © 2013 IEEE.

More Details
Results 26–50 of 87
Results 26–50 of 87