Transfer Learning of Closure Terms and in Reduced Order Models of Chemically Reactive Flows
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar, turbulent, adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first, providing a quantitative characterization of stable and unstable flames. Results indicate that, in hydrogen reheat combustion, compressibility effects play a key role in flame stability and that unstable ignition and combustion are consistently encountered for reactant temperatures close to the mixture's characteristic crossover temperature. Furthermore, it is also found that the characterization of the adiabatic processes is also valid in the presence of non-adiabaticity due to wall heat-loss. Finally, a quantitative characterization of the instantaneous fuel consumption rate within the reaction front is obtained and of its ability, at auto-ignitive conditions, to advance against the approaching turbulent flow of the reactants, for a range of different turbulence intensities, temperatures and pressure levels.
Combustion and Flame
In the present work, premixed combustion in a turbulent boundary layer under auto-ignitive conditions is investigated using direct numerical simulation (DNS). The turbulent inflow of the reactive DNS is obtained by temporal sampling of a corresponding inert DNS of a turbulent boundary layer at a location with Reτ= 360, where Reτ is the friction Reynolds number. The reactants of the DNS are determined by mixing the products of lean natural gas combustion and a H2/N2 fuel jet, resulting in a lean mixture of high temperature with a short ignition delay time. In the free stream the reaction front is stabilized at a streamwise location which can be predicted using the free stream velocity U∞ and the ignition delay time τig. Inside the boundary layer, combustion modifies the near-wall coherent turbulent structures considerably and turbulence results in reaction front wrinkling. The combustion modes in various regions were examined based on the results of displacement velocity, species budget and chemical explosive mode analysis (CEMA). It was indicated that flame propagation prevails in the near-wall region and auto-ignition becomes increasingly important as the wall-normal distance increases. The interactions of turbulence and combustion were studied through statistics of reaction front normal vector and strain rate tensor. It was found that the reaction front normal preferentially aligns with the most compressive strain rate in regions where the effects of heat release on the strain rate are minor and with the most extensive strain rate where its effects are significant. Negative correlations between the wall heat flux and flame quenching distance were observed. A new quenching mode, back-on quenching, was identified. It was found that the heat release rate at the wall is the highest when head-on quenching occurs and lowest when back-on quenching occurs.
Combustion and Flame
It has been previously demonstrated that thermal gas expansion might have a role in boundary layer flashback of premixed turbulent flames [Gruber et al., J Fluid Mech 2012], inducing local flow-reversal in the boundary layer's low-velocity streaks on the reactants’ side of the flame and facilitating its upstream propagation. We perform a two-dimensional numerical investigation of the interaction between a periodic shear flow and a laminar premixed flame. The periodic shear is a simplified model for the oncoming prolonged streamwise velocity streaks with alternating regions of high and low velocities found in turbulent boundary layers in the vicinity of the walls. The parametric study focuses on the amplitude and wavelength of the periodic shear flow and on the gas expansion ratio (unburnt-to-burnt density ratio). With the increase of the amplitudes of the periodic shear flow and of the gas expansion, the curved flame velocity increases monotonically. The flame velocity dependence on the periodic shear wavelength is non-monotonic, which is consistent with previous theoretical studies of curved premixed flame velocity. The flame shape that is initially formed by the oncoming periodic shear appears to be metastable. At a later stage of the flame propagation, the flame shape transforms into the stationary one dominated by the Darrieus-Landau instability.
Combustion and Flame
The evaporation and combustion of n-heptane droplets under high pressure (20 atm) conditions were investigated using three-dimensional direct numerical simulations (DNS) in the present work. Two ambient temperatures were considered, i.e. 860 K and 1180 K. Low-temperature combustion, which is controlled by low-temperature chemical pathways, occurs in the 860 K cases while single-stage combustion occurs in the 1180 K cases. Droplet evaporation and combustion in isotropic turbulence were considered. The interactions of turbulence, evaporation and combustion in a cloud of droplets were explored. It was found that turbulence promotes the evaporation process. The temperature and mixture-fraction are negatively correlated after evaporation, which impacts the subsequent ignition process. For both low-temperature and single-stage combustion, ignition occurs in regions with low scalar dissipation rate. Low-temperature ignition first appears in lean mixtures while single-stage ignition in rich mixtures. Ignition kernels evolve into reaction fronts, which propagate towards thermally and compositionally stratified mixture and consume the remaining fuel. Spontaneous ignition front is dominant in low-temperature combustion while deflagrative front is playing an important role in single-stage combustion. The interactions of turbulence and the reaction front structures were examined. Cylindrical elements are the most probable shape of the reaction front for turbulent droplet combustion. The reaction front normal is misaligned with the vorticity vector for both low-temperature and single-stage combustion, indicating that the vortical structures preferentially locate along the tangential plane of the reaction front, which promotes the observed cylindrical reaction front structures in turbulent combustion of droplets.
Proceedings of the Combustion Institute
Accurate modeling of mixing in large-eddy simulation (LES)/transported probability density function (PDF) modeling of turbulent combustion remains an outstanding issue. The issue is particularly salient in turbulent premixed combustion under extreme conditions such as high-Karlovitz number Ka. The present study addresses this issue by conducting an a priori analysis of a power-law scaling based mixing timescale model for the transported PDF model. A recently produced DNS dataset of a high-Ka turbulent jet flame is used for the analysis. A power-law scaling is observed for a scaling factor used to model the sub-filter scale mixing timescale in this high-Ka turbulent premixed DNS flame when the LES filter size is much greater than the characteristic thermal thickness of a laminar premixed flame. The sensitivity of the observed power-law scaling to the different viewpoints (local or global) and to the different scalars for the data analysis is examined and the dependence of the model parameters on the dimensionless numbers Ka and Re (the Reynolds number) is investigated. Different model formulations for the mixing timescale are then constructed and assessed in the DNS flame. The proposed model is found to be able to reproduce the mixing timescale informed by the high-Ka DNS flame significantly better than a previous model.
Proceedings of the Combustion Institute
A flamelet analysis of a highly resolved direct numerical simulation (DNS) of a multi-injection flame with both auto-ignition and ignition induced by flame-flame interaction was conducted. A novel method was proposed to identify the different combustion modes of ignition processes using generalized flamelet equations. A state-of-the-art DNS database for a multi-injection n-dodecane flame in a diesel engine environment was investigated. Three-dimensional flamelets were extracted from the DNS at different time instants with a focus on auto-ignition and interaction-ignition processes. The influences of mixture field interactions and the scalar dissipation rate on the ignition process were examined by varying the species composition boundary conditions of the transient flamelet equations. Results showed that auto-ignition is delayed if the burned products are added to the oxidizer side of the flamelet, and the ignition delay time is sensitive to the scalar dissipation rate. The significance of mass diffusion in the flame-normal direction is reduced due to the existence of burned products in the oxidizer stream. Budget analyses of the generalized flamelet equations revealed that the transport along the mixture fraction iso-surface is insignificant during the auto-ignition process, but becomes important when interaction-ignition occurs, which is further confirmed through a flamelet regime classification method.
Proceedings of the Combustion Institute
Ammonia has been identified as a promising energy carrier that produces zero carbon dioxide emissions when used as a fuel in gas turbines. Although the combustion properties of pure ammonia are poorly suited for firing of gas turbine combustors, blends of ammonia, hydrogen, and nitrogen can be optimized to exhibit premixed, unstretched laminar flame properties very similar to those of methane. There is limited data available on the turbulent combustion characteristics of such blends and important uncertainties exist related to their blow-out behavior. The present work reports experimental measurements of the blow-out limits in an axisymmetric unconfined bluff-body stabilized burner geometry of NH3/H2/N2-air flame, comprised of 40% NH3, 45% H2, and 15% N2 by volume in the “fuel” blend. Blow-out limits for the NH3/H2/N2-air flames are compared to those of methane–air flames. OH PLIF and OH chemiluminescence images of the flames just prior to blow-out are presented. Furthermore, two large-scale Direct Numerical Simulations (DNS) of temporally evolving turbulent premixed jet flames are performed to investigate differences in the turbulence-chemistry interaction and extinction behavior between the NH3/H2/N2-air and methane–air mixtures. The experiments reveal that the blow-out velocity of NH3/H2/N2-air flames is an order of magnitude higher than that of methane–air flames characterized by nearly identical unstretched laminar flame speed, thermal thickness and adiabatic flame temperature. Results from the DNS support the experimental observation and clearly illustrate that a methane–air mixture exhibits a stronger tendency towards extinction compared to the NH3/H2/N2-air blend for identical strain rates. Furthermore, the DNS results reveal that, even in the presence of intense sheared turbulence, fast hydrogen diffusion into the spatially distributed preheat layers of the fragmented and highly turbulent flame front plays a crucial role in the enhancement of the local heat release rate and, ultimately, in preventing the occurrence of extinction.
Proceedings of the Combustion Institute
In the present work, three-dimensional turbulent non-premixed oblique slot-jet flames impinging at a wall were investigated using direct numerical simulation (DNS). Two cases are considered with the Damköhler number (Da) of case A being twice that of case B. A 17 species and 73-step mechanism for methane combustion was employed in the simulations. It was found that flame extinction in case B is more prominent compared to case A. Reignition in the lower branch of combustion for case A occurs when the scalar dissipation rate relaxes, while no reignition occurs in the lower branch for case B due to excessive scalar dissipation rate. A method was proposed to identify the flame quenching edges of turbulent non-premixed flames in wall-bounded flows based on the intersections of mixture fraction and OH mass fraction iso-surfaces. The flame/wall interactions were examined in terms of the quenching distance and the wall heat flux along the quenching edges. There is essentially no flame/wall interaction in case B due to the extinction caused by excessive turbulent mixing. In contrast, significant interactions between flames and the wall are observed in case A. The quenching distance is found to be negatively correlated with wall heat flux as previously reported in turbulent premixed flames. The influence of chemical reactions and wall on flow topologies was identified. The FS/U and FC/U topologies are found near flame edges, and the NNN/U topology appears when reignition occurs. The vortex-dominant topologies, FC/U and FS/S, play an increasingly important role as the jet turbulence develops.
Proceedings of the Combustion Institute
In the present work, three-dimensional turbulent non-premixed oblique slot-jet flames impinging at a wall were investigated using direct numerical simulation (DNS). Two cases are considered with the Damköhler number (Da) of case A being twice that of case B. A 17 species and 73-step mechanism for methane combustion was employed in the simulations. It was found that flame extinction in case B is more prominent compared to case A. Reignition in the lower branch of combustion for case A occurs when the scalar dissipation rate relaxes, while no reignition occurs in the lower branch for case B due to excessive scalar dissipation rate. A method was proposed to identify the flame quenching edges of turbulent non-premixed flames in wall-bounded flows based on the intersections of mixture fraction and OH mass fraction iso-surfaces. The flame/wall interactions were examined in terms of the quenching distance and the wall heat flux along the quenching edges. There is essentially no flame/wall interaction in case B due to the extinction caused by excessive turbulent mixing. In contrast, significant interactions between flames and the wall are observed in case A. The quenching distance is found to be negatively correlated with wall heat flux as previously reported in turbulent premixed flames. The influence of chemical reactions and wall on flow topologies was identified. The FS/U and FC/U topologies are found near flame edges, and the NNN/U topology appears when reignition occurs. The vortex-dominant topologies, FC/U and FS/S, play an increasingly important role as the jet turbulence develops.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame
The safe operation of aeronautical engines requires an understanding of flame ignition, propagation and extinction. In this study, direct numerical simulations are performed using a 29 species reduced chemical mechanism for jet fuel surrogate Jet A to understand the flame quenching process. Here, initially laminar spherical flames of varying sizes and equivalence ratios are subject to an identical periodic domain of decaying and isotropic high intensity turbulence with a turbulent Reynolds number of 2400. All cases become quenched, except for the larger kernel with lower Karlovitz number. An analysis of the flame structure shows broadened preheat zone, flame shortening on the product side, differential species diffusion and partial fuel pyrolysis in the fresh mixture. Two extinction mechanisms are identified arising from flame shortening and high flame stretch. Flame shortening occurs due to turbulence-chemistry interactions that resemble the flame–flame interaction in a laminar counterflow reactant-to-reactant configuration, which contorts and breaks up the ignition kernel. Flame stretch is a local effect that attenuates the heat release rate and causes the flame to retreat towards the product mixtures, similar to what has been observed for reactant-to-product laminar counterflow flames. Chemical explosive mode analysis was also performed to quantify the flame structure and local combustion mode. The diffusion–reaction balance in pinched-off flame islands favors extinction of these smaller structures, while auto-ignition modes are observed within the flame kernel after fresh mixture is engulfed and preheated in the product kernel. Statistics of the density-weighted displacement speed conditional on local combustion mode indicates strong correlation between the local extinction mode and negative displacement speed. The local balance between diffusion and reaction ultimately determines the propensity for local extinction in both laminar and turbulent flames, the extent of which has an impact on global flame propagation.
Abstract not provided.
Proceedings of the Combustion Institute
In this paper, the first flamelet analysis is conducted of a highly resolved DNS of a multi-injection flame with both auto-ignition and ignition induced by flame-flame interaction. A novel method is proposed to identify the different combustion modes of ignition processes using generalized flamelet equations. The state-of-the-art DNS database generated by Rieth et al. (US National Combustion Meeting, 2019) for a multi-injection flame in a Diesel engine environment is investigated. Three-dimensional flamelets are extracted from the DNS at different time instants with a focus on auto-ignition and interaction-ignition processes. The influences of mixture field interactions and the scalar dissipation rate on the ignition process are investigated by varying the species composition boundary conditions of the transient flamelet equations. Budget analyses of the generalized flamelet equations show that the transport along the mixture fraction iso-surface is insignificant during the auto-ignition process, but becomes important when interaction-ignition occurs, which is further confirmed through a flamelet regime classification method.