Sort by Date
Sort by Title
Standard Format
Show Abstracts
As Citations (APA)
Search results
Jump to search filters
Optica
Liu, Sheng; Sinclair, Michael B. ; Mahony, Thomas S.; Jun, Young C.; Campione, Salvatore; Ginn, James; Bender, Daniel A. ; Wendt, Joel R. ; Ihlefeld, Jon F. ; Clem, Paul ; Wright, Jeremy B. ; Brener, Igal
Proceedings of SPIE - The International Society for Optical Engineering
Young, Amber L.; Hunker, J.D. ; Ellis, A.R.; Samora, Sally ; Wendt, Joel R. ; Stick, Daniel L.
The integration of optics for efficient light delivery and the collection of fluorescence from trapped ions in surface electrode ion traps is a key component to achieving scalability for quantum information processing. Diffractive optical elements (DOEs) present a promising approach as compared to bulk optics because of their small physical profile and their flexibility in tailoring the optical wavefront. The precise alignment of the optics for coupling fluorescence to and from the ions, however, poses a particular challenge. Excitation and manipulation of the ions requires a high degree of optical access, significantly restricting the area available for mounting components. The ion traps, DOEs, and other components are compact, constraining the manipulation of various elements. For efficient fluorescence collection from the ions the DOE must be have a large numerical aperture (NA), which results in greater sensitivity to misalignment. The ion traps are sensitive devices, a mechanical approach to alignment such as contacting the trap and using precision motors to back-off a set distance not only cannot achieve the desired alignment precision, but risks damage to the ion trap. We have developed a non-contact precision optical alignment technique. We use line foci produced by off-axis linear Fresnel zone plates (FZPs) projected on alignment targets etched in the top metal layer of the ion trap and demonstrate micron-level alignment accuracy. © 2014 SPIE.
Proceedings of SPIE - The International Society for Optical Engineering
Davids, Paul ; Kim, Jin K. ; Leonhardt, Darin ; Beechem, Thomas E. ; Howell, Stephen W. ; Ohta, Taisuke ; Wendt, Joel R. ; Montoya, John A.
Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.
Proceedings of SPIE - The International Society for Optical Engineering
Davids, Paul ; Kim, Jin K. ; Leonhardt, Darin ; Beechem, Thomas E. ; Howell, Stephen W. ; Ohta, Taisuke ; Wendt, Joel R. ; Montoya, John A.
Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.
Nano Letters
Nguyen, Khoi T. ; Lu, Tzu M. ; Muller, Richard P. ; Carroll, M.S. ; Lilly, Michael ; Nielsen, Erik N. ; Bishop, Nathaniel B. ; Young, Ralph W. ; Wendt, Joel R. ; Dominguez, Jason ; Pluym, Tammy ; Stevens, Jeffrey
2013 IEEE Photonics Conference, IPC 2013
Davids, Paul ; Kim, Jin K. ; Leonhardt, Darin ; Wendt, Joel R. ; Reinke, Charles M.
Detectors that take full advantage of the energy confinement offered by surface waves could have significant performance advantages in dark current and optical functionality. We use a subwavelength patterned metal nanoantenna structure to convert incoming plane waves to these surface waves. © 2013 IEEE.
Singh, Meenakshi ; Bielejec, Edward S. ; Ten Eyck, Gregory A. ; Bishop, Nathaniel B. ; Wendt, Joel R. ; Luhman, Dwight R. ; Carroll, M.S. ; Lilly, Michael
Lilly, Michael ; Wendt, Joel R. ; Pluym, Tammy ; Stevens, Jeffrey ; Ten Eyck, Gregory A. ; Dominguez, Jason ; Young, Ralph W. ; Nielsen, Erik N. ; Muller, Richard P. ; Carroll, M.S. ; Lu, Tzu M. ; Tracy, Lisa A. ; Nguyen, Khoi T. ; Luhman, Dwight R. ; Bishop, Nathaniel B. ; Singh, Meenakshi ; Bielejec, Edward S. ; Garratt, Elias J.
Nature Physics
Jacobson, Noah T. ; Nguyen, Khoi T. ; Lilly, Michael ; Bishop, Nathaniel B. ; Nielsen, Erik N. ; Wendt, Joel R. ; Dominguez, Jason ; Pluym, Tammy ; Carroll, M.S.
Leonhardt, Darin ; Peters, David ; Wendt, Joel R.
Kim, Jin K. ; Leonhardt, Darin ; Davids, Paul ; Wendt, Joel R. ; Reinke, Charles M. ; Montoya, John A.
Samora, Sally ; Wiwi, Michael ; Wendt, Joel R.
Applied Physics Letters
Tracy, Lisa A. ; Lu, Tzu M. ; Ten Eyck, Gregory A. ; Pluym, Tammy ; Wendt, Joel R. ; Lilly, Michael ; Carroll, M.S.
Vawter, Gregory A. ; Skogen, Erik J. ; Overberg, Mark E. ; Peake, Gregory M. ; Alford, Charles ; Wendt, Joel R. ; Cajas, Florante G.
Brener, Igal ; Bender, Daniel A. ; Wendt, Joel R. ; Ihlefeld, Jon F. ; Clem, Paul ; Wright, Jeremy B. ; Sinclair, Michael B.
Nguyen, Khoi T. ; Stevens, James E. ; Grubbs, Robert K. ; Pluym, Tammy ; Dominguez, Jason ; Young, Ralph W. ; Muller, Richard P. ; Nielsen, Erik N. ; Jacobson, Noah T. ; Lilly, Michael ; Carroll, M.S. ; Bishop, Nathaniel B. ; Tracy, Lisa A. ; Carr, Stephen M. ; Lu, Tzu M. ; Wendt, Joel R.
Ellis, A.R. ; Dagel, Amber ; Scrymgeour, David ; Wendt, Joel R. ; Carter, Tony R. ; Samora, Sally ; Kemme, Shanalyn A.
Peters, David ; Reinke, Charles M. ; Wendt, Joel R.
Leonhardt, Darin ; Reinke, Charles M. ; Kim, Jin K. ; Wendt, Joel R. ; Davids, Paul ; Klem, John F.
Leonhardt, Darin ; Kim, Jin K. ; Reinke, Charles M. ; Davids, Paul ; Wendt, Joel R. ; Klem, John F.
Nguyen, Khoi T. ; Carroll, M.S. ; Lilly, Michael ; Bishop, Nathaniel B. ; Nielsen, Erik N. ; Wendt, Joel R. ; Dominguez, Jason ; Pluym, Tammy ; Stevens, Jeffrey ; Ten Eyck, Gregory A.
Lu, Tzu M. ; Bishop, Nathaniel B. ; Tracy, Lisa A. ; Blume-Kohout, Robin ; Pluym, Tammy ; Wendt, Joel R. ; Dominguez, Jason ; Lilly, Michael ; Carroll, M.S.
Lu, Tzu M. ; Cederberg, Jeffrey G. ; Lilly, Michael ; Carroll, M.S. ; Bishop, Nathaniel B. ; Tracy, Lisa A. ; Blume-Kohout, Robin ; Pluym, Tammy ; Wendt, Joel R. ; Dominguez, Jason ; Means, Joel L. ; Kotula, Paul G.
Vawter, Gregory A. ; Skogen, Erik J. ; Overberg, Mark E. ; Peake, Gregory M. ; Alford, Charles ; Wendt, Joel R. ; Cajas, Florante G.
Liu, Sheng ; Sinclair, Michael B. ; Brener, Igal ; Jun, Young C. ; Bender, Daniel A. ; Wendt, Joel R. ; Ihlefeld, Jon F. ; Clem, Paul ; Wright, Jeremy B.
Results 126–150 of 286
25 Results per page
50 Results per page
100 Results per page
200 Results per page