Publications

Results 51–100 of 274

Search results

Jump to search filters

Wet-chemical etching of FIB lift-out TEM lamellae for damage-free analysis of 3-D nanostructures

Ultramicroscopy

Turner, Emily M.; Sapkota, Keshab R.; Hatem, Christopher; Lu, Ping; Wang, George T.; Jones, Kevin S.

Reducing ion beam damage from the focused ion beam (FIB) during fabrication of cross sections is a well-known challenge for materials characterization, especially cross sectional characterization of nanostructures. To address this, a new method has been developed for cross section fabrication enabling high resolution transmission electron microscopy (TEM) analysis of 3-D nanostructures free of surrounding material and free of damage detectable by TEM analysis. Before FIB processing, nanopillars are encapsulated in a sacrificial oxide which acts as a protective layer during FIB milling. The cross sectional TEM lamella containing the nanopillars is then mounted and thinned with some modifications to conventional FIB sample preparation that provide stability for the lamella during the following wet-chemical dip etch. The wet-chemical etch of the TEM lamella removes the sacrificial oxide layer, freeing the nanopillars from any material that would obscure TEM imaging. Both high resolution TEM and aberration corrected scanning TEM images of Si/SiGe pillars with diameters down to 30 nm demonstrate the successful application of this approach.

More Details

Reaction of BCl3 with H- and Cl-terminated Si(100) as a pathway for selective, monolayer doping through wet chemistry

Applied Surface Science

Silva-Quis, Dhamelyz; He, Chuan; Butera, Robert E.; Wang, George T.; Teplyakov, Andrew V.

The reaction of boron trichloride with the H and Cl-terminated Si(100) surfaces was investigated to understand the interaction of this molecule with the surface for designing wet-chemistry based silicon surface doping processes using a carbon- and oxygen-free precursor. The process was followed with X-ray photoelectron spectroscopy (XPS). Within the reaction conditions investigated, the reaction is highly effective on Cl-Si(100) for temperatures below 70°C, at which point both surfaces react with BCl$_3$. The XPS investigation followed the formation of a B 1s peak at 193.5 eV corresponding to (B-O)$_x$ species. Even the briefest exposure to ambient conditions lead to hydroxylation of surface borochloride species. However, the Si 2p signature at 102 eV allowed for a confirmation of the formation of a direct Si-B bond. Density functional theory was utilized to supplement the analysis and identify possible major surface species resulting from these reactions. This work provides a new pathway to obtain a functionalized silicon surface with a direct Si-B bond that can potentially be exploited as a means of selective, ultra-shallow, and supersaturated doping.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Proceedings of SPIE - The International Society for Optical Engineering

Katzenmeyer, Aaron M.; Dmitrovic, Sanja; Baczewski, Andrew D.; Bussmann, Ezra; Lu, Tzu M.; Anderson, Evan M.; Schmucker, Scott W.; Ivie, Jeffrey A.; Campbell, Deanna M.; Ward, Daniel; Wang, George T.; Misra, Shashank

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with sub-nanometer precision, typically for quantum physics demonstrations, and to dope silicon past the solid-solubility limit, with potential applications in microelectronics and plasmonics. However, this process, which we call atomic precision advanced manufacturing (APAM), currently lacks the throughput required to develop sophisticated applications because there is no proven scalable hydrogen lithography pathway. Here, we demonstrate and characterize an APAM device workflow where STM lithography has been replaced with photolithography. An ultraviolet laser is shown to locally heat silicon controllably above the temperature required for hydrogen depassivation. STM images indicate a narrow range of laser energy density where hydrogen has been depassivated, and the surface remains well-ordered. A model for photothermal heating of silicon predicts a local temperature which is consistent with atomic-scale STM images of the photo-patterned regions. Finally, a simple device made by exposing photo-depassivated silicon to phosphine is found to have a carrier density and mobility similar to that produced by similar devices patterned by STM.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, Tina M.; Chou, Stanley S.; Dickens, Peter T.; Modine, Normand A.; Yu, Wenlong; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, Joel R.; Medlin, Douglas L.; Leonard, Francois; Pan, Wei

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.

More Details

High temperature synthesis and characterization of ultrathin tellurium nanostructures

APL Materials

Sapkota, Keshab R.; Lu, Ping; Medlin, Douglas L.; Wang, George T.

Thin tellurium (Te) has been predicted as a potential two dimensional system exhibiting superior thermoelectric and electrical properties. Here, we report the synthesis of high quality ultrathin Te nanostructures and the study of their electrical properties at room temperature. High quality ultrathin Te nanostructures are obtained by high temperature vapor phase deposition on c-plane sapphire substrates. The obtained nanostructures are as thin as 3 nm and exhibit α-Te phase with trigonal crystal structure. Room temperature electrical measurements show significantly higher electrical conductivity compared to prior reports of Te in bulk form or in nanostructure form synthesized by low temperature vapor deposition or wet chemical methods. Additionally, these nanostructures exhibit high field effect hole mobility comparable to black-phosphorous measured previously under similar conditions.

More Details

Nonvolatile voltage controlled molecular spin state switching

Applied Physics Letters

Hao, G.; Mosey, A.; Jiang, X.; Yost, A.J.; Sapkota, Keshab R.; Wang, George T.; Zhang, X.; Zhang, J.; N'Diaye, A.T.; Cheng, R.; Xu, X.; Dowben, P.A.

Voltage-controlled room temperature isothermal reversible spin crossover switching of [Fe{H 2 B(pz) 2 } 2 (bipy)] thin films is demonstrated. This isothermal switching is evident in thin film bilayer structures where the molecular spin crossover film is adjacent to a molecular ferroelectric. The adjacent molecular ferroelectric, either polyvinylidene fluoride hexafluoropropylene or croconic acid (C 5 H 2 O 5 ), appears to lock the spin crossover [Fe{H 2 B(pz) 2 } 2 (bipy)] molecular complex largely in the low or high spin state depending on the direction of ferroelectric polarization. In both a planar two terminal diode structure and a transistor structure, the voltage controlled isothermal reversible spin crossover switching of [Fe{H 2 B(pz) 2 } 2 (bipy)] is accompanied by a resistance change and is seen to be nonvolatile, i.e., retained in the absence of an applied electric field. The result appears general, as the voltage controlled nonvolatile switching can be made to work with two different molecular ferroelectrics: croconic acid and polyvinylidene fluoride hexafluoropropylene.

More Details

Quantum Nanofabrication: Mechanisms and Fundamental Limits

Wang, George T.; Coltrin, Michael E.; Lu, Ping; Miller, Philip R.; Leung, Benjamin; Xiao, Xiaoyin; Sapkota, Keshab R.; Leonard, Francois; Bran Anleu, Gabriela A.; Koleske, Daniel D.; Tsao, Jeffrey Y.; Balakrishnan, Ganesh; Addamane, Sadhvikas; Nelson, Jeffrey

Quantum-size-controlled photoelectrochemical (QSC-PEC) etching, which uses quantum confinement effects to control size, can potentially enable the fabrication of epitaxial quantum nanostructures with unprecedented accuracy and precision across a wide range of materials systems. However, many open questions remain about this new technique, including its limitations and broader applicability. In this project, using an integrated experimental and theoretical modeling approach, we pursue a greater understanding of the time-dependent QSC-PEC etch process and to uncover the underlying mechanisms that determine its ultimate accuracy and precision. We also seek to broaden our understanding of the scope of its ultimate applicability in emerging nanostructures and nanodevices.

More Details

Fabrication of Position Controlled Si/SiGe Quantum Dots for Integrated Optical Sources and Beyond

Sapkota, Keshab R.; Wang, George T.; Jones, Kevin; Turner, Emily

Recent work done at the University of Florida (UF) revealed a tremendously enhanced germanium diffusion process along silicon/silicon dioxide interfaces during oxidizing anneals, allowing for the controlled formation of Si quantum wires. This project seeks to further explore this unusual germanium behavior during oxidation for the purpose of forming unique and useful nano and quantum structures. Specifically, we propose here to demonstrate for the first time that this phenomenon can be extended to realize OD Si nanostructures through the oxidation of axially heterostructured vertical Si/SiGe pillars. Such structures could be of great interest for applications in integrated optoelectronics, beyond Moore's Law computing, and quantum computing.

More Details

Hexagonal Nanopyramidal Prisms of Nearly Intrinsic InN on Patterned GaN Nanowire Arrays

Crystal Growth and Design

Golam Sarwar, A.T.M.; Leung, Benjamin; Wang, George T.; Myers, Roberto C.

By using multiple growth steps that separate the nucleation and growth processes, we show that nearly intrinsic InN single nanocrystals of high optical quality can be formed on patterned GaN nanowire arrays by molecular beam epitaxy. The InN nanostructures form into well-defined hexagonal prisms with pyramidal tops. Micro-photoluminescence (μ-PL) is carried out at low temperature (LT: 28.2 K) and room temperature (RT: 285 K) to gauge the relative material quality of the InN nanostructures. Nanopyramidal prisms grown using a three-step growth method are found to show superior quantum efficiency. Excitation and temperature dependent μ-PL demonstrates the very high quality and nearly intrinsic nature of the ordered InN nanostructure arrays.

More Details

Visible Quantum Nanophotonics

Subramania, Ganapathi S.; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel; Coltrin, Michael E.; Agarwal, Sapan; Anderson, P.D.; Leung, Ben

The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.

More Details

Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers

Nano Letters

Li, Changyi; Wright, Jeremy B.; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J.; Leung, Benjamin; Chow, Weng W.; Brener, Igal; Koleske, Daniel; Luk, Ting S.; Feezell, Daniel F.; Brueck, S.R.J.; Wang, George T.

We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

More Details

Ultrafast Carrier Capture and Auger Recombination in Single GaN/InGaN Multiple Quantum Well Nanowires

ACS Photonics

Boubanga-Tombet, Stephane; Wright, Jeremy B.; Lu, Ping; Williams, Michael R.C.; Li, Changyi; Wang, George T.; Prasankumar, Rohit P.

Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. Here, we used this technique to study carrier dynamics in single GaN/InGaN core-shell nonpolar multiple quantum well nanowires. We find that intraband carrier-carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. The Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices.

More Details
Results 51–100 of 274
Results 51–100 of 274