RECENT INVESTIGATIONS USING THE NEUTRON SCATTER CAMERA
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. Designing such a system is a daunting task. Using timemodulated collimators could be a transformative technique leading to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. A new technique using time encoding to make a compact, high efficiency imaging detector was conceived. Design considerations using Monte Carlo modeling and the construction and demonstration of a prototype imager are described.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Abstract not provided.
IEEE Nuclear Science Symposium Conference Record
Fast neutron based inspection systems are of interest in many Homeland Security applications because they offer the potential for elemental identification particularly for low Z elements which are the prime constituents of explosives. We are investigating a resonance tomography technique which may address some of the current problems found in fast neutron based inspection systems. A commercial off-the-shelf DT generator is used with an array of detectors to probe materials simultaneously over a large energy range and multiple viewing angles allowing for simultaneous 3-D imaging and materials identification. A prototype system has been constructed and we present here recent results for the identification of materials with differing H, C, N, O compositions. © 2011 IEEE.
IEEE Nuclear Science Symposium Conference Record
Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be directly achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. We are exploring the use of time-modulated collimators that may lead to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. We will present results from a large standoff SNM detection demonstration using a prototype high sensitivity time encoded modulation imager. © 2011 IEEE.