Publications

Results 51–75 of 122

Search results

Jump to search filters

Shungnak Energy Configuration Options

Rosewater, David M.; Eddy, John P.

Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

More Details

Development of a frequency regulation duty-cycle for standardized energy storage performance testing

Journal of Energy Storage

Rosewater, David M.; Ferreira, Summer R.

The US DOE Protocol for uniformly measuring and expressing the performance of energy storage systems, first developed in 2012 through inclusive working group activities, provides standardized methodologies for evaluating an energy storage system's ability to supply specific services to electrical grids. This article elaborates on the data and decisions behind the duty-cycle used for frequency regulation in this protocol. Analysis of a year of publicly available frequency regulation control signal data from a utility was considered in developing the representative signal for this use case. This showed that signal standard deviation can be used as a metric for aggressiveness or rigor. From these data, we select representative 2 h long signals that exhibit nearly all of dynamics of actual usage under two distinct regimens, one for average use and the other for highly aggressive use. These results were combined into a 24-h duty-cycle comprised of average and aggressive segments. The benefits and drawbacks of the selected duty-cycle are discussed along with its potential implications to the energy storage industry.

More Details

Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

Schoenwald, David A.; Ferreira, Summer R.; Rosewater, David M.; Conover, David R.; Crawford, Alasdair J.; Fuller, Jason; Gourisetti, Sri N.; Viswanathan, Vilayanur

The Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (PNNL-22010) was first issued in November 2012 as a first step toward providing a foundational basis for developing an initial standard for the uniform measurement and expression of energy storage system (ESS) performance. Based on experiences with the application and use of that document, and to include additional ESS applications and associated duty cycles, test procedures and performance metrics, a first revision of the November 2012 Protocol was issued in June 2014 (PNNL-22010 Rev. 1). As an update of the 2014 revision 1 to the Protocol, this document (the March 2016 revision 2 to the Protocol) is intended to supersede the June 2014 revision 1 to the Protocol and provide a more user-friendly yet more robust and comprehensive basis for measuring and expressing ESS performance. This foreword1 provides general and specific details about what additions, revisions, and enhancements have been made to the June 2014 Protocol and the rationale for them in arriving at this March 2016 Protocol (PNNL-22010 Rev. 2).

More Details
Results 51–75 of 122
Results 51–75 of 122