Publications

Results 51–75 of 78

Search results

Jump to search filters

Cavern/Vault Disposal Concepts and Thermal Calculations for Direct Disposal of 37-PWR Size DPCs

Hardin, Ernest H.; Hadgu, Teklu H.; Clayton, Daniel J.

This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.

More Details

Summary of the nuclear risk assessment for the Mars 2020 mission environmental impact statement

Nuclear and Emerging Technologies for Space, NETS 2015

Clayton, Daniel J.; Bignell, John B.; Jones, Christopher A.; Rohe, Daniel P.; Flores, Gregg J.; Bartel, Timothy J.; Gelbard, Fred G.; Le, San L.; Morrow, Charles W.; Potter, Donald L.; Young, Larry W.; Bixler, Nathan E.; Lipinski, Ronald J.

In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. NASA has prepared an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS includes information on the risks of mission accidents to the general public and on-site workers at the launch complex. The Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of the MMRTG option for the EIS. This paper provides a summary of the methods and results used in the NRA.

More Details

Summary of the nuclear risk assessment for the Mars 2020 mission environmental impact statement

Nuclear and Emerging Technologies for Space, NETS 2015

Clayton, Daniel J.; Bignell, John B.; Jones, Christopher A.; Rohe, Daniel P.; Flores, Gregg J.; Bartel, Timothy J.; Gelbard, Fred G.; Le, San L.; Morrow, Charles W.; Potter, Donald L.; Young, Larry W.; Bixler, Nathan E.; Lipinski, Ronald J.

In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. NASA has prepared an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS includes information on the risks of mission accidents to the general public and on-site workers at the launch complex. The Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of the MMRTG option for the EIS. This paper provides a summary of the methods and results used in the NRA.

More Details

Risk estimation methodology for launch accidents

PSAM 2014 - Probabilistic Safety Assessment and Management

Clayton, Daniel J.; Lipinski, Ronald J.; Bechtel, Ryan D.

As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlo simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.

More Details
Results 51–75 of 78
Results 51–75 of 78